JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 6, 011103 (2017) doi:10.7567/JJAPCP.6.011103

Dynamical stability of face centered cubic lithium at 25 GPa

Miguel Borinaga1,2, Unai Aseginolaza1,2, Ion Errea2,3, Aitor Bergara1,2,4, Unai Aseginolaza1,2, Ion Errea2,3, Aitor Bergara1,2,4

  1. 1Centro de Física de Materiales CFM, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia/San Sebastián,Basque Country, Spain
  2. 2Donostia International Physics Center (DIPC), Manuel Lardizabal pasealekua 4, 20018 Donostia/San Sebastián, Basque Country, Spain
  3. 3Fisika Aplikatua 1 Saila, Bilboko Ingeniaritza Eskola, University of the Basque Country (UPV/EHU), Rafael Moreno “Pitxitxi” Pasealekua 3, 48013 Bilbao, Basque Country, Spain
  4. 4Departamento de Física de la Materia Condensada, University of the Basque Country (UPV/EHU), 48080 Bilbao, Basque Country, Spain
  5. 1Centro de Física de Materiales CFM, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia/San Sebastián,Basque Country, Spain
  6. 2Donostia International Physics Center (DIPC), Manuel Lardizabal pasealekua 4, 20018 Donostia/San Sebastián, Basque Country, Spain
  7. 3Fisika Aplikatua 1 Saila, Bilboko Ingeniaritza Eskola, University of the Basque Country (UPV/EHU), Rafael Moreno “Pitxitxi” Pasealekua 3, 48013 Bilbao, Basque Country, Spain
  8. 4Departamento de Física de la Materia Condensada, University of the Basque Country (UPV/EHU), 48080 Bilbao, Basque Country, Spain
  • Received November 11, 2016
  • PDF (1.1 MB) |

Abstract

We study the dynamical stability of face centered cubic lithium at 25 GPa within ab initio density functional theory calculations. The system shows an extremely softened transverse acoustic mode in the Γ–K high symmetry line, whose frequency is difficult to converge within a first-principles harmonic approach. We estimate the anharmonic correction of this value within the frozen phonon approximation assuming that the transverse acoustic mode only interacts with itself. By solving the Schrödinger equation for the potential energy curve and displacements along the vibrational mode of interest, we obtain the anharmonic eigenvalues and eigenfunctions. While the harmonic approach yields a phonon frequency of −28.6 cm−1 for this mode, anharmonicity renormalizes dramatically this value up to 115.3 cm−1. Thus, anharmonic effects seem to dynamically stabilize this system.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 F. Seitz, Phys. Rev. 47, 400 (1935).
  2. 2 C. L. Guillaume, E. Gregoryanz, O. Degtyareva, M. I. McMahon, M. Hanfland, S. Evans, M. Guthrie, S. V. Sinogeikin, and H.-K. Mao, Nat. Phys. 7, 211 (2011).
  3. 3 M. Hanfland, K. Syassen, N. E. Christensen, and D. L. Novikov, Nature 408, 174 (2000).
  4. 4 T. Matsuoka, S. Onoda, M. Kaneshige, Y. Nakamoto, K. Shimizu, T. Kagayama, and Y. Ohishi, J. Phys.: Conf. Ser. 121, 052003 (2008).
  5. 5 B. Rousseau, Y. Xie, Y. Ma, and A. Bergara, Eur. Phys. J. B 81, 1 (2011).
  6. 6 A. Bergara, J. B. Neaton, and N. W. Ashcroft, Phys. Rev. B 62, 8494 (2000).
  7. 7 A. Rodriguez-Prieto and A. Bergara, Phys. Rev. B 72, 125406 (2005).
  8. 8 T. Matsuoka and K. Shimizu, Nature 458, 186 (2009).
  9. 9 I. Errea, A. Rodriguez-Prieto, B. Rousseau, V. M. Silkin, and A. Bergara, Phys. Rev. B 81, 205105 (2010).
  10. 10 A. M. Schaeffer, S. R. Temple, J. K. Bishop, and S. Deemyad, Proc. Natl. Acad. Sci. U.S.A. 112, 60 (2015).
  11. 11 N. W. Ashcroft, Nature 419, 569 (2002).
  12. 12 T. Bazhirov, J. Noffsinger, and M. L. Cohen, Phys. Rev. B 82, 184509 (2010).
  13. 13 K. Shimizu, H. Ishikawa, D. Takao, T. Yagi, and K. Amaya, Nature 419, 597 (2002).
  14. 14 G. Profeta, C. Franchini, N. N. Lathiotakis, A. Floris, A. Sanna, M. A. L. Marques, M. Lüders, S. Massidda, E. K. U. Gross, and A. Continenza, Phys. Rev. Lett. 96, 047003 (2006).
  15. 15 R. Akashi and R. Arita, Phys. Rev. Lett. 111, 057006 (2013).
  16. 16 S. U. Maheswari, H. Nagara, K. Kusakabe, and N. Suzuki, J. Phys. Soc. Jpn. 74, 3227 (2005).
  17. 17 A. Rodriguez-Prieto, A. Bergara, V. M. Silkin, and P. M. Echenique, Phys. Rev. B 74, 172104 (2006).
  18. 18 I. Errea, B. Rousseau, and A. Bergara, Phys. Rev. Lett. 106, 165501 (2011).
  19. 19 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  20. 20 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
  21. 21 P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
  22. 22 X. Gonze, Phys. Rev. A 52, 1096 (1995).
  23. 23 S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
  24. 24 Wolfram Research, Inc., Mathematica, Version 10.0.2, Champaign, IL (2014).
  25. 25 I. Errea, M. Calandra, and F. Mauri, Phys. Rev. Lett. 111, 177002 (2013).
  26. 1 F. Seitz, Phys. Rev. 47, 400 (1935).
  27. 2 C. L. Guillaume, E. Gregoryanz, O. Degtyareva, M. I. McMahon, M. Hanfland, S. Evans, M. Guthrie, S. V. Sinogeikin, and H.-K. Mao, Nat. Phys. 7, 211 (2011).
  28. 3 M. Hanfland, K. Syassen, N. E. Christensen, and D. L. Novikov, Nature 408, 174 (2000).
  29. 4 T. Matsuoka, S. Onoda, M. Kaneshige, Y. Nakamoto, K. Shimizu, T. Kagayama, and Y. Ohishi, J. Phys.: Conf. Ser. 121, 052003 (2008).
  30. 5 B. Rousseau, Y. Xie, Y. Ma, and A. Bergara, Eur. Phys. J. B 81, 1 (2011).
  31. 6 A. Bergara, J. B. Neaton, and N. W. Ashcroft, Phys. Rev. B 62, 8494 (2000).
  32. 7 A. Rodriguez-Prieto and A. Bergara, Phys. Rev. B 72, 125406 (2005).
  33. 8 T. Matsuoka and K. Shimizu, Nature 458, 186 (2009).
  34. 9 I. Errea, A. Rodriguez-Prieto, B. Rousseau, V. M. Silkin, and A. Bergara, Phys. Rev. B 81, 205105 (2010).
  35. 10 A. M. Schaeffer, S. R. Temple, J. K. Bishop, and S. Deemyad, Proc. Natl. Acad. Sci. U.S.A. 112, 60 (2015).
  36. 11 N. W. Ashcroft, Nature 419, 569 (2002).
  37. 12 T. Bazhirov, J. Noffsinger, and M. L. Cohen, Phys. Rev. B 82, 184509 (2010).
  38. 13 K. Shimizu, H. Ishikawa, D. Takao, T. Yagi, and K. Amaya, Nature 419, 597 (2002).
  39. 14 G. Profeta, C. Franchini, N. N. Lathiotakis, A. Floris, A. Sanna, M. A. L. Marques, M. Lüders, S. Massidda, E. K. U. Gross, and A. Continenza, Phys. Rev. Lett. 96, 047003 (2006).
  40. 15 R. Akashi and R. Arita, Phys. Rev. Lett. 111, 057006 (2013).
  41. 16 S. U. Maheswari, H. Nagara, K. Kusakabe, and N. Suzuki, J. Phys. Soc. Jpn. 74, 3227 (2005).
  42. 17 A. Rodriguez-Prieto, A. Bergara, V. M. Silkin, and P. M. Echenique, Phys. Rev. B 74, 172104 (2006).
  43. 18 I. Errea, B. Rousseau, and A. Bergara, Phys. Rev. Lett. 106, 165501 (2011).
  44. 19 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  45. 20 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
  46. 21 P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
  47. 22 X. Gonze, Phys. Rev. A 52, 1096 (1995).
  48. 23 S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
  49. 24 Wolfram Research, Inc., Mathematica, Version 10.0.2, Champaign, IL (2014).
  50. 25 I. Errea, M. Calandra, and F. Mauri, Phys. Rev. Lett. 111, 177002 (2013).