JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 6, 011104 (2017) doi:10.7567/JJAPCP.6.011104

First-principles study of phosphorus under high pressure: Crystal structure, superconductivity, and anharmonicity

Akitaka Nakanishi, Takahiro Ishikawa, Katsuya Shimizu, Takahiro Ishikawa, Katsuya Shimizu

  1. Department Center for Science and Technology under Extreme Conditions, Graduate School of Engineering Science, Osaka University, Japan
  2. Department Center for Science and Technology under Extreme Conditions, Graduate School of Engineering Science, Osaka University, Japan
  • Received November 11, 2016
  • PDF (721 KB) |

Abstract

We have performed first-principles calculations of the structural stability, superconductivity, and anharmonicity of phosphorus under high pressure. The simple hexagonal (sh) structure transforms into an experimentally observed cI16 structure via a body-centered cubic (bcc) structure. In the transition from an sh into bcc structure, the superconducting critical temperature Tc increases from 0.5 to 12 K, which is the highest Tc in phosphorus. It decreases to 6 K in the transition into the cI16 phase. The pressure-dependence of Tc is related to that of the density of states at the Fermi level. In addition, we investigated anharmonicities in phosphorus under high pressure.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 T. Ishikawa, H. Nagara, K. Kusakabe, and N. Suzuki, Phys. Rev. Lett. 96, 095502 (2006).
  2. 2 H. Fujihisa, Y. Akahama, H. Kawamura, Y. Ohishi, Y. Gotoh, H. Yamawaki, M. Sakashita, S. Takeya, and K. Honda, Phys. Rev. Lett. 98, 175501 (2007).
  3. 3 Y. Akahama and H. Kawamura, Phys. Rev. B 61, 3139 (2000).
  4. 4 T. Sugimoto, Y. Akahama, H. Fujihisa, Y. Ozawa, H. Fukui, N. Hirao, and Y. Ohishi, Phys. Rev. B 86, 024109 (2012).
  5. 5 A. S. Mikhaylushkin, S. I. Simak, B. Johansson, and U. Häussermann, Phys. Rev. B 76, 092103 (2007).
  6. 6 M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).
  7. 7 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
  8. 8 P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
  9. 9 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  10. 10 D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
  11. 11 P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).
  12. 12 S. Y. Savrasov, Phys. Rev. B 54, 16470 (1996).
  13. 13 S. Baroni, S. de Gironcoli, A. D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
  14. 14 I. Errea, M. Calandra, and F. Mauri, Phys. Rev. B 89, 064302 (2014).
  15. 15 M. Karuzawa, M. Ishizuka, and S. Endo, J. Phys.: Condens. Matter 14, 10759 (2002).
  16. 16 M. Marqués, G. J. Ackland, L. F. Lundegaard, S. Falconi, C. Hejny, M. I. McMahon, J. Contreras-García, and M. Hanfland, Phys. Rev. B 78, 054120 (2008).
  17. 17 T. Ishikawa, H. Nagara, K. Mukose, K. Kusakabe, H. Miyagi, and N. Suzuki, High Pressure Res. 28, 459 (2008).
  18. 18 A. Nakanishi, T. Ishikawa, H. Nagara, K. Shimizu, and H. Katayama-Yoshida, High Pressure Res. 32, 3 (2012).
  19. 1 T. Ishikawa, H. Nagara, K. Kusakabe, and N. Suzuki, Phys. Rev. Lett. 96, 095502 (2006).
  20. 2 H. Fujihisa, Y. Akahama, H. Kawamura, Y. Ohishi, Y. Gotoh, H. Yamawaki, M. Sakashita, S. Takeya, and K. Honda, Phys. Rev. Lett. 98, 175501 (2007).
  21. 3 Y. Akahama and H. Kawamura, Phys. Rev. B 61, 3139 (2000).
  22. 4 T. Sugimoto, Y. Akahama, H. Fujihisa, Y. Ozawa, H. Fukui, N. Hirao, and Y. Ohishi, Phys. Rev. B 86, 024109 (2012).
  23. 5 A. S. Mikhaylushkin, S. I. Simak, B. Johansson, and U. Häussermann, Phys. Rev. B 76, 092103 (2007).
  24. 6 M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).
  25. 7 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
  26. 8 P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
  27. 9 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  28. 10 D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
  29. 11 P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).
  30. 12 S. Y. Savrasov, Phys. Rev. B 54, 16470 (1996).
  31. 13 S. Baroni, S. de Gironcoli, A. D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
  32. 14 I. Errea, M. Calandra, and F. Mauri, Phys. Rev. B 89, 064302 (2014).
  33. 15 M. Karuzawa, M. Ishizuka, and S. Endo, J. Phys.: Condens. Matter 14, 10759 (2002).
  34. 16 M. Marqués, G. J. Ackland, L. F. Lundegaard, S. Falconi, C. Hejny, M. I. McMahon, J. Contreras-García, and M. Hanfland, Phys. Rev. B 78, 054120 (2008).
  35. 17 T. Ishikawa, H. Nagara, K. Mukose, K. Kusakabe, H. Miyagi, and N. Suzuki, High Pressure Res. 28, 459 (2008).
  36. 18 A. Nakanishi, T. Ishikawa, H. Nagara, K. Shimizu, and H. Katayama-Yoshida, High Pressure Res. 32, 3 (2012).