JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 6, 011105 (2017) doi:10.7567/JJAPCP.6.011105

Temperature and deformation dependence of -AlGaAs/GaAsP/-AlGaAs laser diode wavelength and polarization

Evgeny V. Bogdanov, Natalia Ya. Minina, Natalia Ya. Minina

  1. Physics Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
  2. Physics Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
  • Received October 31, 2016
  • PDF (366 KB) |

Abstract

Numerical calculations of the optical energy gap and the optical gains gTE, gTM of TE and TM polarization modes in p-AlxGa1−xAs/GaAs0.84P0.16/n-AlxGa1−xAs laser diode structure are carried out for uniaxial compression up to P = 10 kbar along in-plane and normal to a heterostructure directions at temperature interval 77–300 K. The optical energy gap shift under compression is substantially anisotropic and does not change significantly between 77 and 300 K. The gTM/gTE ratio is also almost insensitive to the temperature but demonstrates several times decrease under in-plane compression and no change under compression normal to a heterostructure.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 C. S. Adams and D. T. Cassidy, J. Appl. Phys. 64, 6631 (1988).
  2. 2 J. W. Tomm, R. Müller, A. Bärwolff, T. Elsaesser, D. Lorenzen, F. X. Daiminger, A. Gerhardt, and J. Donecker, Appl. Phys. Lett. 73, 3908 (1998).
  3. 3 J. W. Tomm, A. Gerhardt, R. Müller, V. Malyarchuk, Y. Sainte-Marie, P. Galtier, J. Nagle, and J.-P. Landesman, J. Appl. Phys. 93, 1354 (2003).
  4. 4 J. W. Tomm, A. Gerhardt, R. Müller, M. L. Biermann, J. P. Holland, D. Lorenzen, and E. Kaulfersch, Appl. Phys. Lett. 82, 4193 (2003).
  5. 5 E. V. Bogdanov, N. Ya. Minina, J. W. Tomm, and H. Kissel, J. Appl. Phys. 112, 093113 (2012).
  6. 6 E. V. Bogdanov, H. Kissel, K. I. Kolokolov, and N. Ya. Minina, Semicond. Sci. Technol. 31, 035008 (2016).
  7. 7 Q. T. Tien, A. Gerhardt, S. Schwirzke-Schaaf, J. W. Tomm, H. Muntz, J. Biesenbach, M. Oudart, J. Nagle, and M. L. Biermann, Appl. Phys. Lett. 86, 101911 (2005).
  8. 8 J. Lee and M. O. Vassell, Phys. Rev. B 37, 8855 (1988).
  9. 9 K. I. Kolokolov, A. M. Savin, S. D. Beneslavski, N. Ya. Minina, and O. P. Hansen, Phys. Rev. B 59, 7537 (1999).
  10. 10 I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
  11. 11 S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (World Scientific, Singapore, 1999) Chap. 4, p. 55.
  12. 1 C. S. Adams and D. T. Cassidy, J. Appl. Phys. 64, 6631 (1988).
  13. 2 J. W. Tomm, R. Müller, A. Bärwolff, T. Elsaesser, D. Lorenzen, F. X. Daiminger, A. Gerhardt, and J. Donecker, Appl. Phys. Lett. 73, 3908 (1998).
  14. 3 J. W. Tomm, A. Gerhardt, R. Müller, V. Malyarchuk, Y. Sainte-Marie, P. Galtier, J. Nagle, and J.-P. Landesman, J. Appl. Phys. 93, 1354 (2003).
  15. 4 J. W. Tomm, A. Gerhardt, R. Müller, M. L. Biermann, J. P. Holland, D. Lorenzen, and E. Kaulfersch, Appl. Phys. Lett. 82, 4193 (2003).
  16. 5 E. V. Bogdanov, N. Ya. Minina, J. W. Tomm, and H. Kissel, J. Appl. Phys. 112, 093113 (2012).
  17. 6 E. V. Bogdanov, H. Kissel, K. I. Kolokolov, and N. Ya. Minina, Semicond. Sci. Technol. 31, 035008 (2016).
  18. 7 Q. T. Tien, A. Gerhardt, S. Schwirzke-Schaaf, J. W. Tomm, H. Muntz, J. Biesenbach, M. Oudart, J. Nagle, and M. L. Biermann, Appl. Phys. Lett. 86, 101911 (2005).
  19. 8 J. Lee and M. O. Vassell, Phys. Rev. B 37, 8855 (1988).
  20. 9 K. I. Kolokolov, A. M. Savin, S. D. Beneslavski, N. Ya. Minina, and O. P. Hansen, Phys. Rev. B 59, 7537 (1999).
  21. 10 I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
  22. 11 S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (World Scientific, Singapore, 1999) Chap. 4, p. 55.