JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 6, 011106 (2017) doi:10.7567/JJAPCP.6.011106

Electrical resistivity measurements under high pressure for NdSmNiO

Kai Kobayashi, Hiroki Yamamoto, Akitoshi Nakata, Izuru Umehara, Masatomo Uehara, Hiroki Yamamoto, Akitoshi Nakata, Izuru Umehara, Masatomo Uehara

  1. Department of Physics, Yokohama National University, Yokohama 240-8501, Japan
  2. Department of Physics, Yokohama National University, Yokohama 240-8501, Japan
  • Received November 14, 2016
  • PDF (964 KB) |

Abstract

Nd3.5Sm0.5Ni3O8 is a candidate for high-Tc superconductor, due to the close structural and electrical similarities with high-Tc cuprates. In electrical resistivity measurement, Nd3.5Sm0.5Ni3O8 shows a semiconducting behavior. However, by intercalation and subsequent deintercalation treatments with sulfur, Nd3.5Sm0.5Ni3O8 displays metallic behavior down to 20–40 K, followed by the weak semiconducting tendency at lower temperatures. In this study, the electrical resistivity measurements under high pressures up to 2 GPa were performed for a semiconducting sample of Nd3.5Sm0.5Ni3O8. We discuss the electrical properties of this material, combining the high-pressure resistivity data with measurements on metallic samples at ambient pressure.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 Y. Sakurai, N. Chiba, Y. Kimishima, and M. Uehara, Physica C 487, 27 (2013).
  2. 2 Y. Sakurai, S. Sakura, G. HU, S. Suzuki, I. Umehara, Y. Kimishima, and M. Uehara, JPS Conf. Proc. 1, 012086 (2014).
  3. 3 P. Lacorre, J. Solid State Chem. 97, 495 (1992).
  4. 4 R. Retoux, J. Rodriguez-Carvajal, and P. Lacorre, J. Solid State Chem. 140, 307 (1998).
  5. 5 V. V. Poltavets, K. A. Lokshin, S. Dikmen, M. Croft, T. Egami, and M. Greenblatt, J. Am. Chem. Soc. 128, 9050 (2006).
  6. 6 V. V. Poltavets, K. A. Lokshin, M. Croft, T. K. Mandal, T. Egami, and M. Greenblatt, Inorg. Chem. 46, 10887 (2007).
  7. 7 V. V. Poltavets, K. A. Lokshin, A. H. Nevidomskyy, M. Croft, T. A. Tyson, J. Hadermann, G. V. Tendeloo, T. Egami, G. Kotliar, N. ApRoberts-Warren, A. P. Dioguardi, N. J. Curro, and M. Greenblatt, Phys. Rev. Lett. 104, 206403 (2010).
  8. 8 N. ApRoberts-Warren, A. P. Dioguardi, V. V. Poltavets, M. Greenblatt, P. Klavins, and N. J. Curro, Phys. Rev. B 83, 014402 (2011).
  9. 9 V. V. Poltavets, M. Greenblatt, G. H. Fecher, and C. Felser, Phys. Rev. Lett. 102, 046405 (2009).
  10. 10 V. Pardo and W. E. Pickett, Phys. Rev. B 85, 045111 (2012).
  11. 11 V. Pardo and W. E. Pickett, Phys. Rev. Lett. 105, 266402 (2010).
  12. 12 S. Sarkar, I. Dasgupta, M. Greenblatt, and T. Saha-Dasgupta, Phys. Rev. B 84, 180411 (2011).
  13. 13 J.-G. Cheng, J.-S. Zgou, J. B. Goodenough, H. D. Zhou, K. Matsubayashi, Y. Uwatoko, P. P. Kong, C. Q. Jin, W. G. Yang, and G. Y. Shen, Phys. Rev. Lett. 108, 236403 (2012).
  14. 14 A. Nakata, S. Yano, H. Yamamoto, S. Sakura, Y. Kimishima, and M. Uehara, Adv. Condens. Matter Phys. 2016, 5808029 (2016).
  15. 15 M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
  16. 16 J. Zhang, Y.-S. Chen, D. Phelan, H. Zhang, M. R. Norman, and J. F. Mitchell, Proc. Natl. Acad. Sci. U.S.A. 113, 8945 (2016).
  17. 17 H. Takagi, T. Ido, S. Ishibashi, M. Uota, S. Uchida, and Y. Tokura, Phys. Rev. B 40, 2254 (1989).
  18. 1 Y. Sakurai, N. Chiba, Y. Kimishima, and M. Uehara, Physica C 487, 27 (2013).
  19. 2 Y. Sakurai, S. Sakura, G. HU, S. Suzuki, I. Umehara, Y. Kimishima, and M. Uehara, JPS Conf. Proc. 1, 012086 (2014).
  20. 3 P. Lacorre, J. Solid State Chem. 97, 495 (1992).
  21. 4 R. Retoux, J. Rodriguez-Carvajal, and P. Lacorre, J. Solid State Chem. 140, 307 (1998).
  22. 5 V. V. Poltavets, K. A. Lokshin, S. Dikmen, M. Croft, T. Egami, and M. Greenblatt, J. Am. Chem. Soc. 128, 9050 (2006).
  23. 6 V. V. Poltavets, K. A. Lokshin, M. Croft, T. K. Mandal, T. Egami, and M. Greenblatt, Inorg. Chem. 46, 10887 (2007).
  24. 7 V. V. Poltavets, K. A. Lokshin, A. H. Nevidomskyy, M. Croft, T. A. Tyson, J. Hadermann, G. V. Tendeloo, T. Egami, G. Kotliar, N. ApRoberts-Warren, A. P. Dioguardi, N. J. Curro, and M. Greenblatt, Phys. Rev. Lett. 104, 206403 (2010).
  25. 8 N. ApRoberts-Warren, A. P. Dioguardi, V. V. Poltavets, M. Greenblatt, P. Klavins, and N. J. Curro, Phys. Rev. B 83, 014402 (2011).
  26. 9 V. V. Poltavets, M. Greenblatt, G. H. Fecher, and C. Felser, Phys. Rev. Lett. 102, 046405 (2009).
  27. 10 V. Pardo and W. E. Pickett, Phys. Rev. B 85, 045111 (2012).
  28. 11 V. Pardo and W. E. Pickett, Phys. Rev. Lett. 105, 266402 (2010).
  29. 12 S. Sarkar, I. Dasgupta, M. Greenblatt, and T. Saha-Dasgupta, Phys. Rev. B 84, 180411 (2011).
  30. 13 J.-G. Cheng, J.-S. Zgou, J. B. Goodenough, H. D. Zhou, K. Matsubayashi, Y. Uwatoko, P. P. Kong, C. Q. Jin, W. G. Yang, and G. Y. Shen, Phys. Rev. Lett. 108, 236403 (2012).
  31. 14 A. Nakata, S. Yano, H. Yamamoto, S. Sakura, Y. Kimishima, and M. Uehara, Adv. Condens. Matter Phys. 2016, 5808029 (2016).
  32. 15 M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
  33. 16 J. Zhang, Y.-S. Chen, D. Phelan, H. Zhang, M. R. Norman, and J. F. Mitchell, Proc. Natl. Acad. Sci. U.S.A. 113, 8945 (2016).
  34. 17 H. Takagi, T. Ido, S. Ishibashi, M. Uota, S. Uchida, and Y. Tokura, Phys. Rev. B 40, 2254 (1989).