JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 6, 011107 (2017) doi:10.7567/JJAPCP.6.011107

Physical properties of Cd doped CeIrIn under pressure

Ryoma Tsunoda1, Yusuke Hirose2, Rikio Settai2, Yusuke Hirose2, Rikio Settai2

  1. 1Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
  2. 2Department of Physics, Niigata University, Niigata 950-2181, Japan
  3. 1Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
  4. 2Department of Physics, Niigata University, Niigata 950-2181, Japan
  • Received November 14, 2016
  • PDF (852 KB) |

Abstract

We measured the electrical resistivity ρ of CeIr(In1−xCdx)5 under pressure for x = 0.05 and 0.10, which show the onset of superconductivity (SC) at Tsconset ~ 0.9 K and antiferromagnetic transition at TN ~ 3.4 K. For x = 0.05, Tsconset increases by applying pressure up to 2.8 GPa and zero resistivity is observed at Tscρ=0 above 2.4 GPa. For x = 0.10, the pressure dependence of TN shows peak at around 2 GPa and TN seems to be 0 K toward 3 GPa, where SC phase appears. The maximum value of Tscρ=0 is independent on amount of doped Cd, showing 1.35 K. We analyzed the temperature dependence of the electrical resistivity ρ for x = 0.05 and 0.10 under pressure using the following equation, ρ = ρ0 + ATn. This analysis revealed that ρ shows the sublinear temperature dependence (n < 1) in the wide temperature region above Tscρ=0, and ρ0 decreases abruptly in the pressure region where Tscρ=0 indicates a maximum.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. Lett. 84, 4986 (2000).
  2. 2 C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, J. Phys.: Condens. Matter 13, L337 (2001).
  3. 3 L. D. Pham, T. Park, S. Maquilon, J. D. Thompson, and Z. Fisk, Phys. Rev. Lett. 97, 056404 (2006).
  4. 4 T. Moriya and T. Takimoto, J. Phys. Soc. Jpn. 64, 960 (1995).
  5. 5 V. A. Sidorov, M. Nicklas, P. G. Pagliuso, J. L. Sarrao, Y. Bang, A. V. Balatsky, and J. D. Thompson, Phys. Rev. Lett. 89, 157004 (2002).
  6. 6 C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Europhys. Lett. 53, 354 (2001).
  7. 7 S. Kawasaki, G.-q. Zheng, H. Kan, Y. Kitaoka, H. Shishido, and Y. Onuki, Phys. Rev. Lett. 94, 037007 (2005).
  8. 8 T. Muramatsu, T. Kobayashi, K. Shimizu, K. Amaya, D. Aoki, Y. Haga, and Y. Onuki, Physica C 388–389, 539 (2003).
  9. 9 M. Nicklas, V. A. Sidorov, H. A. Borges, P. G. Pagliuso, J. L. Sarrao, and J. D. Thompson, Phys. Rev. Lett. 70, 0202505 (2004).
  10. 10 M. Yashima, N. Tagami, S. Taniguchi, T. Unemori, K. Uematsu, H. Mukuda, Y. Kitaoka, Y. Ota, F. Honda, R. Settai, and Y. Onuki, Phys. Rev. Lett. 109, 117001 (2012).
  11. 11 S. Kambe, H. Sakai, Y. Tokunaga, and R. E. Walstedt, Phys. Rev. B 82, 144503 (2010).
  12. 12 Y. Chen, W. B. Jiang, C. Y. Guo, F. Ronning, E. D. Bauer, T. Park, H. Q. Yuan, Z. Fisk, J. D. Thompson, and X. Lu, Phys. Rev. Lett. 114, 146403 (2015).
  13. 13 T. Shang, R. E. Baumbach, K. Gofryk, F. Ronning, Z. F. Weng, J. L. Zhang, X. Lu, E. D. Bauer, J. D. Thompson, and H. Q. Yuan, Phys. Rev. B 89, 041101 (2014).
  14. 14 Y. Kasahara, T. Iwasawa, Y. Shimizu, H. Shishido, T. Shibauchi, I. Vekhter, and Y. Matsuda, Phys. Rev. Lett. 100, 207003 (2008).
  15. 15 S. Kittaka, Y. Aoki, T. Sakakibara, A. Sakai, S. Nakatsuji, Y. Tsutsumi, M. Ichioka, and K. Machida, Phys. Rev. B 85, 060505(R) (2012).
  16. 16 K. Miyake, J. Phys.: Condens. Matter 19, 125201 (2007).
  17. 17 T. Park, V. A. Sidorov, F. Ronning, J.-X. Zhu, Y. Tokiwa, H. Lee, E. D. Bauer, R. Movshovich, J. L. Sarrao, and J. D. Thompson, Nature 456, 366 (2008).
  18. 18 S. Araki, R. Settai, T. C. Kobayashi, and Y. Onuki, J. Magn. Magn. Mater. 226–230, 80 (2001).
  19. 19 Y. Dalichaouch, M. C. de Andrade, D. A. Gajewski, R. Chau, P. Visani, and M. B. Maple, Phys. Rev. Lett. 75, 3938 (1995).
  20. 20 V. A. Sidorov, X. Lu, T. Park, H. Lee, P. H. Tobash, R. E. Baumbach, F. Ronning, E. D. Bauer, and J. D. Thompson, Phys. Rev. B 88, 020503 (2013).
  21. 1 H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. Lett. 84, 4986 (2000).
  22. 2 C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, J. Phys.: Condens. Matter 13, L337 (2001).
  23. 3 L. D. Pham, T. Park, S. Maquilon, J. D. Thompson, and Z. Fisk, Phys. Rev. Lett. 97, 056404 (2006).
  24. 4 T. Moriya and T. Takimoto, J. Phys. Soc. Jpn. 64, 960 (1995).
  25. 5 V. A. Sidorov, M. Nicklas, P. G. Pagliuso, J. L. Sarrao, Y. Bang, A. V. Balatsky, and J. D. Thompson, Phys. Rev. Lett. 89, 157004 (2002).
  26. 6 C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Europhys. Lett. 53, 354 (2001).
  27. 7 S. Kawasaki, G.-q. Zheng, H. Kan, Y. Kitaoka, H. Shishido, and Y. Onuki, Phys. Rev. Lett. 94, 037007 (2005).
  28. 8 T. Muramatsu, T. Kobayashi, K. Shimizu, K. Amaya, D. Aoki, Y. Haga, and Y. Onuki, Physica C 388–389, 539 (2003).
  29. 9 M. Nicklas, V. A. Sidorov, H. A. Borges, P. G. Pagliuso, J. L. Sarrao, and J. D. Thompson, Phys. Rev. Lett. 70, 0202505 (2004).
  30. 10 M. Yashima, N. Tagami, S. Taniguchi, T. Unemori, K. Uematsu, H. Mukuda, Y. Kitaoka, Y. Ota, F. Honda, R. Settai, and Y. Onuki, Phys. Rev. Lett. 109, 117001 (2012).
  31. 11 S. Kambe, H. Sakai, Y. Tokunaga, and R. E. Walstedt, Phys. Rev. B 82, 144503 (2010).
  32. 12 Y. Chen, W. B. Jiang, C. Y. Guo, F. Ronning, E. D. Bauer, T. Park, H. Q. Yuan, Z. Fisk, J. D. Thompson, and X. Lu, Phys. Rev. Lett. 114, 146403 (2015).
  33. 13 T. Shang, R. E. Baumbach, K. Gofryk, F. Ronning, Z. F. Weng, J. L. Zhang, X. Lu, E. D. Bauer, J. D. Thompson, and H. Q. Yuan, Phys. Rev. B 89, 041101 (2014).
  34. 14 Y. Kasahara, T. Iwasawa, Y. Shimizu, H. Shishido, T. Shibauchi, I. Vekhter, and Y. Matsuda, Phys. Rev. Lett. 100, 207003 (2008).
  35. 15 S. Kittaka, Y. Aoki, T. Sakakibara, A. Sakai, S. Nakatsuji, Y. Tsutsumi, M. Ichioka, and K. Machida, Phys. Rev. B 85, 060505(R) (2012).
  36. 16 K. Miyake, J. Phys.: Condens. Matter 19, 125201 (2007).
  37. 17 T. Park, V. A. Sidorov, F. Ronning, J.-X. Zhu, Y. Tokiwa, H. Lee, E. D. Bauer, R. Movshovich, J. L. Sarrao, and J. D. Thompson, Nature 456, 366 (2008).
  38. 18 S. Araki, R. Settai, T. C. Kobayashi, and Y. Onuki, J. Magn. Magn. Mater. 226–230, 80 (2001).
  39. 19 Y. Dalichaouch, M. C. de Andrade, D. A. Gajewski, R. Chau, P. Visani, and M. B. Maple, Phys. Rev. Lett. 75, 3938 (1995).
  40. 20 V. A. Sidorov, X. Lu, T. Park, H. Lee, P. H. Tobash, R. E. Baumbach, F. Ronning, E. D. Bauer, and J. D. Thompson, Phys. Rev. B 88, 020503 (2013).