JJAP Conference Proceedings

JJAP Conf. Proc. 7, 011004 (2018) doi:10.7567/JJAPCP.7.011004

Coupled channel study of antihydrogen-hydrogen molecular resonance state

Takuma Yamashita, Yasushi Kino

  1. Department of Chemistry, Tohoku University, Sendai 980-8578, Japan
  • Received March 31, 2018
  • PDF (810 KB) |

Abstract

We report a theoretical study of antihydrogen-hydrogen molecular resonance states consisting of a positron, an antiproton, an electron and a proton. The four particles strongly correlate and show different character from the hydrogen molecule. Because of the non-separability of the positron and electron motions from the antiproton and proton motions, the adiabatic approximation breaks down at the short antiproton-proton distance. Based on a non-adiabatic method, we directly solve the four-body problem and obtain the resonance energies and widths. In order to examine the roles of positron–antiproton and electron–proton correlations as well as positron–electron and antiproton–proton correlations, we introduce two different types of coordinate systems. One is suited for describing an antihydrogen–hydrogen configuration, and the other is a positronium–protonium configuration. The antihydrogen–hydrogen configuration contributes to the existence of the molecular resonance states, and the positronium–protonium configuration makes the resonance states unstable. Mixing of the two configurations results in an antihydrogen-hydrogen molecular resonance state, and the resonance state has an energy of −0.077 9(3) a.u. from the antihydrogen–hydrogen dissociation threshold with its lifetime 16 (2) fs.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 T. Walcher, Annu. Rev. Nucl. Part. Sci. 38, 67 (1988).
  2. 2 C. Amsler and F. Myhrer, Annu. Rev. Nucl. Part. Sci. 41, 219 (1991).
  3. 3 Y. C. Jean, P. E. Mallon, and D. M. Schrader, Principles and Applications of Positron and Positronium Chemistry (World Scientific, Singapore, 2003).
  4. 4 C. M. Surko and F. A. Gianturco, New Directions in Antimatter Physics and Chemistry (Kluwer Academic, Amsterdam, 2001).
  5. 5 G. G. Ryzhikh and J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997).
  6. 6 K. Strasburger and H. Chojnacki, J. Chem. Phys. 108, 3218 (1998).
  7. 7 J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B 32, 2203 (1999).
  8. 8 J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B 35, R81 (2002).
  9. 9 M. W. J. Bromley and J. Mitroy, Phys. Rev. A 66, 062504 (2002).
  10. 10 Y. Kubota and Y. Kino, New J. Phys. 10, 023038 (2008).
  11. 11 T. Yamashita, M. Umair, and Y. Kino, J. Phys. B 50, 205002 (2017).
  12. 12 D. B. Cassidy and A. P. Mills, Nature 449, 195 (2007).
  13. 13 M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, C. Carraro, C. L. Cesar, M. Charlton, M. J. T. Collier, M. Doser, V. Filippini, K. S. Fine, A. Fontana, M. C. Fujiwara, R. Funakoshi, P. Genova, J. S. Hangst, R. S. Hayano, M. H. Holzscheiter, L. V. Jorgensen, V. Lagomarsino, R. Landua, D. Lindelöf, E. Lodi Rizzini, M. Macrì, N. Madsen, G. Manuzio, M. Marchesotti, P. Montagna, H. Pruys, C. Regenfus, P. Riedler, J. Rochet, A. Rotondi, G. Rouleau, G. Testera, A. Variola, T. L. Watson, and D. P. van der Werf, Nature 419, 456 (2002).
  14. 14 The ALPHA Collaboration, Nat. Phys. 7, 558 (2011).
  15. 15 N. Kuroda, S. Ulmer, D. J. Murtagh, S. Van Gorp, Y. Nagata, M. Diermaier, S. Federmann, M. Leali, C. Malbrunot, V. Mascagna, O. Massiczek, K. Michishio, T. Mizutani, A. Mohri, H. Nagahama, M. Ohtsuka, B. Radics, S. Sakurai, C. Sauerzopf, K. Suzuki, M. Tajima, H. A. Torii, L. Venturelli, B. Wünschek, J. Zmeskal, N. Zurlo, H. Higaki, Y. Kanai, E. Lodi Rizzini, Y. Nagashima, Y. Matsuda, E. Widmann, and Y. Yamazaki, Nat. Commun. 5, 3089 (2014).
  16. 16 M. Diermaier, C. B. Jepsen, B. Kolbinger, C. Malbrunot, O. Massiczek, C. Sauerzopf, M. C. Simon, J. Zmeskal, and E. Widmann, Nat. Commun. 8, 15749 (2017).
  17. 17 M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, E. Butler, A. Capra, C. Carruth, C. L. Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden, C. A. Isaac, A. Ishida, M. A. Johnson, S. A. Jones, S. Jonsell, L. Kurchaninov, N. Madsen, M. Mathers, D. Maxwell, J. T. K. McKenna, S. Menary, J. M. Michan, T. Momose, J. J. Munich, P. Nolan, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira, S. Stracka, G. Stutter, C. So, T. D. Tharp, J. E. Thompson, R. I. Thompson, D. P. van der Werf, and J. S. Wurtele, Nature 541, 506 (2017).
  18. 18 M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, E. Butler, A. Capra, C. Carruth, C. L. Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden, C. A. Isaac, A. Ishida, M. A. Johnson, S. A. Jones, S. Jonsell, L. Kurchaninov, N. Madsen, M. Mathers, D. Maxwell, J. T. K. McKenna, S. Menary, J. M. Michan, T. Momose, J. J. Munich, P. Nolan, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira, S. Stracka, G. Stutter, C. So, T. D. Tharp, J. E. Thompson, R. I. Thompson, D. P. van der Werf, and J. S. Wurtele, Nature 548, 66 (2017).
  19. 19 M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, A. Capra, C. Carruth, C. L. Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, J. S. Hangst, W. N. Hardy, M. E. Hayden, C. A. Isaac, M. A. Johnson, J. M. Jones, S. A. Jones, S. Jonsell, A. Khramov, P. Knapp, L. Kurchaninov, N. Madsen, D. Maxwell, J. T. K. McKenna, S. Menary, T. Momose, J. J. Munich, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira, G. Stutter, C. So, T. D. Tharp, R. I. Thompson, D. P. van der Werf, and J. S. Wurtele, Nature 557, 71 (2018).
  20. 20 Y. Sacquin, Eur. Phys. J. D 68, 31 (2014).
  21. 21 P. Scampoli and J. Storey, Mod. Phys. Lett. A 29, 1430017 (2014).
  22. 22 Y. K. Ho, Phys. Rev. A 17, 1675 (1978).
  23. 23 A. M. Frolov and V. H. Smith, Jr., Phys. Rev. A 56, 2417 (1997).
  24. 24 S. L. Saito, Nucl. Instrum. Methods Phys. Res., Sect. B 171, 60 (2000).
  25. 25 S. Bubin and L. Adamowicz, Phys. Rev. A 74, 052502 (2006).
  26. 26 S. Bubin and K. Varga, Phys. Rev. A 84, 012509 (2011).
  27. 27 T. Yamashita, Y. Kino, E. Hiyama, S. Jonsell, and P. Froelich, J. Phys.: Conf. Ser. 875, 052031 (2017).
  28. 28 H. Stegeby, K. Piszczatowski, H. Karlsson, R. Lindh, and P. Froelich, Cent. Eur. J. Phys. 10, 1038 (2012).
  29. 29 H. Stegeby and K. Piszczatowski, J. Phys. B 49, 014002 (2016).
  30. 30 E. Hiyama, Y. Kino, and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003).
  31. 31 T. Yamashita and Y. Kino, Eur. Phys. J. D 72, 13 (2018).
  32. 32 T. Yamashita and Y. Kino, EPJ Web Conf. 181, 01034 (2018).
  33. 33 Y. K. Ho, Phys. Rep. 99, 1 (1983).
  34. 34 K. Piszczatowski, G. Łach, M. Przybytek, J. Komasa, K. Pachucki, and B. Jeziorski, J. Chem. Theory Comput. 5, 3039 (2009).
  35. 35 K. Strasburger, J. Phys. B 35, L435 (2002).
  36. 36 A. Y. Voronin and P. Froelich, Phys. Rev. A 77, 022505 (2008).
  37. 37 E. Garrido, D. V. Fedorov, and A. S. Jensen, Phys. Lett. B 684, 132 (2010).
  38. 38 A. Voronin and J. Carbonell, Hyperfine Interactions 115, 143 (1998).
  39. 39 P. Froelich, S. Jonsell, A. Saenz, B. Zygelman, and A. Dalgarno, Phys. Rev. Lett. 84, 4577 (2000).
  40. 40 B. Zygelman, A. Saenz, P. Froelich, and S. Jonsell, Phys. Rev. A 69, 042715 (2004).
  41. 41 K. Sakimoto, Phys. Rev. A 90, 032514 (2014).