JJAP Conference Proceedings

JJAP Conf. Proc. 7, 011101 (2018) doi:10.7567/JJAPCP.7.011101

Effect of beam flux on radiation damage accumulation in ion-bombarded Si

Hideaki Minagawa1, Shunsuke Nakanishi1, Masaki Maekawa3, Atsuo Kawasuso3, Hidetsugu Tsuchida1,2

  1. 1Department of Nuclear Engineering, Kyoto University, Nishikyo, Kyoto 615-8530, Japan
  2. 2Quantum Science and Engineering Center, Kyoto University, Uji, Kyoto 611-0011, Japan
  3. 3National Institute for Quantum and Radiological Science and Technology (QST), Takasaki, Gumma 370-1292, Japan
  • Received November 01, 2017
  • PDF (569 KB) |


The effects of ion flux on radiation defect production are studied for single crystal silicon bombarded by 6.7 MeV carbon ions. The resultant damage was characterized by X-ray diffraction analysis and positron annihilation Doppler broadening spectroscopy. The results showed that lattice shrinkage occurs after irradiation although the amount of shrinkage decreases with increasing flux at a fixed fluence. This implies that defect concentration is decreased at higher flux. The major defect is identified as a divacancy. To evaluate this flux effect, we consider the flux dependence of defect recombination by defect reaction rate theory. The calculation suggests that the experimental results can be explained by considering the flux effect on the defect recombination process except thermal annealing. This suggests that the reaction rate constant varies by ion flux i.e., the rate of displacements per atom.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 R. Wolfe and C. J. Kriessman, Applied Solid State Science: Advances in Materials and Device Research (Academic Press, New York, 1969).
  2. 2 M. T. Myers, S. Charnvanichborikarn, L. Shao, and S. O. Kucheyev, Phys. Rev. Lett. 109, 095502 (2012).
  3. 3 G. Carter, J. Appl. Phys. 79, 8285 (1996).
  4. 4 A. Hallén, D. Fenyö, B. U. R. Sundqvist, R. E. Johnson, and B. G. Svensson, J. Appl. Phys. 70, 3025 (1991).
  5. 5 A. I. Titov and G. Carter, Nucl. Instrum. Methods Phys. Res., Sect. B 119, 491 (1996).
  6. 6 H. Minagawa, H. Tsuchida, R. Murase, and A. Itoh, Nucl. Instrum. Methods Phys. Res., Sect. B 372, 38 (2016).
  7. 7 Web [http://crystdb.nims.go.jp/].
  8. 8 M. Hakala, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 57, 7621 (1998).
  9. 9 C. A. J. Ammerlaan, H. Bracht, E. E. Haller, R. Murray, R. C. Newman, R. Sauer, N. A. Stolwijk, J. Weber, and W. Zulehner, Landolt Börnstein, New Series III/41A2α (2002).
  10. 10 M. Trochet, L. K. Béland, J.-F. Joly, P. Brommer, and N. Mousseau, Phys. Rev. B 91, 224106 (2015).
  11. 11 G. S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2016) 2nd ed.
  12. 12 K. Nordlund, A. E. Sand, F. Granberg, S. J. Zinkle, R. Stoller, R. S. Averback, T. Suzudo, L. Malerba, F. Banhart, W. J. Weber, F. Willaime, S. Dudarev, and D. Simeone, Nuclear Science NEA/NSC/DOC 9 (2015).
  13. 13 M. J. Norgett, M. T. Robinson, and I. M. Torrens, Nucl. Eng. Des. 33, 50 (1975).
  14. 14 A. Antonelli and J. Bernholc, Phys. Rev. B 40, 10643 (1989).
  15. 15 C. Wang, Z. Wang, and Q. Meng, Physica B 406, 467 (2011).
  16. 16 M. Tang, L. Colombo, J. Zhu, and T. Diaz de la Rubia, Phys. Rev. B 55, 14279 (1997).
  17. 17 J. A. Baker, T. N. Tucker, N. E. Moyer, and R. C. Buschert, J. Appl. Phys. 39, 4365 (1968).