JJAP Conference Proceedings

JJAP Conf. Proc. 7, 011102 (2018) doi:10.7567/JJAPCP.7.011102

High-temperature in-situ measurements of thermal vacancies in a TiAl intermetallic compound using a desktop positron beam

Atsushi Yabuuchi, Shigeru Sakai, Masataka Mizuno, Hideki Araki, Yasuharu Shirai

  1. Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
  • Received September 25, 2017
  • PDF (548 KB) |


A desktop positron beam apparatus combined with a β+-γ coincidence positron annihilation lifetime spectrometer was used for investigating thermal equilibrium vacancies in a TiAl intermetallic compound which is expected to find uses as a lightweight, heat-resistant structural material. The vacancy formation energy of the TiAl was derived from high-temperature in-situ measurements of positron lifetimes, and its value is in good agreement with a previously-reported value measured using a sophisticated internal positron source method. The measurement method used in this study makes it possible to investigate the vacancy formation energies in any material at high temperatures easily, even in unweldable ceramics, semiconductors, and brittle intermetallics for which conventional internal positron source methods cannot be applied.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 H. Nakajima, J. Miner. Met. Mater. Soc. 49, 15 (1997).
  2. 2 H.-E. Schaefer, Phys. Status Solidi A 102, 47 (1987).
  3. 3 U. Brossmann, R. Würschum, K. Badura, and H.-E. Schaefer, Phys. Rev. B 49, 6457 (1994).
  4. 4 W. Bauer, J. Briggmann, H.-D. Carstanjen, S. Connell, W. Decker, J. Diehl, K. Maier, J. Major, H.-E. Schaefer, A. Seeger, H. Stoll, and E. Widmann, Nucl. Instrum. Methods Phys. Res., Sect. B 50, 300 (1990).
  5. 5 P. Asoka-kumar, J. S. Greenberg, S. D. Henderson, H. Huomo, M. S. Lubell, K. G. Lynn, R. Mayer, S. McCorkle, J. McDonough, J. C. Palathingal, B. F. Phlips, A. Vehanen, M. Weber, and X. Y. Wu, Nucl. Instrum. Methods Phys. Res., Sect. A 337, 3 (1993).
  6. 6 Y. Shirai, M. Sakamura, I. Shishido, and M. Yamaguchi, J. Jpn. Inst. Met. Mater. 59, 679 (1995) (in Japanese).
  7. 7 Y. Shirai, High Temp. Mater. Processes 17, 57 (1998).
  8. 8 P. Chalermkarnnon, I. Shishido, M. Yuga, H. Araki, and Y. Shirai, J. Jpn. Inst. Met. Mater. 66, 1004 (2002) (in Japanese).
  9. 9 P. Chalermkarnnon, Doctoral thesis, Osaka Univ. (2003) (in Japanese).
  10. 10 T. Tetsui, Adv. Eng. Mater. 3, 307 (2001).
  11. 11 T. Tetsui, Mater. Sci. Eng. A 329–331, 582 (2002).
  12. 12 M. T. Jovanović, B. Dimčić, I. Bobić, S. Zec, and V. Maksimović, J. Mater. Process. Technol. 167, 14 (2005).
  13. 13 J. Aguilar, A. Schievenbusch, and O. Kättlitz, Intermetallics 19, 757 (2011).
  14. 14 Y. Shirai, H.-E. Schaefer, and A. Seeger, Positron Annihilation (World Scientific, Singapore, 1989) p. 419.
  15. 15 P. Chalermkarnnon, M. Yuga, T. Nakata, S. Kishimoto, H. Araki, and Y. Shirai, Radioisotopes 50, 576 (2001).
  16. 16 A. Yabuuchi, N. Oshima, H. Kato, B. E. O’Rourke, A. Kinomura, T. Ohdaira, Y. Kobayashi, and R. Suzuki, JJAP Conf. Proc. 2, 011102 (2014).
  17. 17 P. Kirkegaard, M. Eldrup, O. E. Mogensen, and N. J. Pedersen, Comput. Phys. Commun. 23, 307 (1981).
  18. 18 P. Kirkegaard, N. J. Pedersen, and M. Eldrup, PATFIT-88 — A Data-Processing System for Positron Annihilation Spectra on Mainframe and Personal Computers (RISØ-M-2740) (Risø National Laboratory, Denmark, 1989).
  19. 19 Y. Shirai and M. Yamaguchi, Mater. Sci. Eng. A 152, 173 (1992).
  20. 20 B. Bergersen and M. J. Stott, Solid State Commun. 7, 1203 (1969).
  21. 21 A. Seeger, Appl. Phys. 4, 183 (1974).
  22. 22 R. O. Simmons and R. W. Balluffi, Phys. Rev. 117, 52 (1960).