JJAP Conference Proceedings

JJAP Conf. Proc. 7, 011103 (2018) doi:10.7567/JJAPCP.7.011103

Positron lifetime studies for Ce-based bulk metallic glasses

Yong Zhao1,2, Bo Zhang1, Kiminori Sato2

  1. 1Institute of Amorphous Matter Science, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
  2. 2Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
  • Received August 30, 2017
  • PDF (417 KB) |

Abstract

Positron lifetime and coincident Doppler broadening (CDB) spectroscopy were conducted for Ce70Al10Cu20 bulk metallic glass (BMG) to study the local atomic structure. A single component positron lifetime of ∼246 ps corresponding to annihilation in the free volume intrinsic to the local structure of BMG glassy matrix was obtained. CDB spectroscopy revealed that the free volume is dominantly surrounded by Ce atoms. Positron lifetime for Ce70Al10Cu20 BMG is much longer than that of Ce68Al10Cu20Nb2 BMG, which is caused by the diffusion of Nb atoms into the vacancy-sized free volumes in the Ce–Al–Cu matrix. In addition, the positron lifetime for Ce–Al–Cu BMG is much different from those of Ce–Ga–Cu BMGs where two positron lifetime components τ1 ∼ 129 ps and τ2 ∼ 261 ps attributable to the densely-packed glassy state and free volume, respectively, are found. The present results imply that Ga plays an important role in triggering off the formation of the densely-packed glassy state.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng. R 44, 45 (2004).
  2. 2 A. R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W. J. Botta, G. Vaughan, M. Di Michiel, and Å. Kvick, Acta Mater. 53, 1611 (2005).
  3. 3 W. L. Johnson, J. Lu, and M. D. Demetriou, Intermetallics 10, 1039 (2002).
  4. 4 Y. Zhao, P. F. Liu, L. Wu, B. Zhang, and K. Sato, Intermetallics 100, 112 (2018).
  5. 5 S. Mukherjee, J. Schroers, Z. Zhou, W. L. Johnson, and W.-K. Rhim, Acta Mater. 52, 3689 (2004).
  6. 6 R. J. Xue, D. P. Wang, Z. G. Zhu, D. W. Ding, B. Zhang, and W. H. Wang, J. Appl. Phys. 114, 123514 (2013).
  7. 7 K. Sato and W. Sprengel, J. Chem. Phys. 137, 104906 (2012).
  8. 8 M. Luckabauer, U. Kühn, J. Eckert, and W. Sprengel, Phys. Rev. B 89, 174113 (2014).
  9. 9 K. Sato, H. Murakami, W. Sprengel, H.-E. Schaefer, and Y. Kobayashi, Appl. Phys. Lett. 94, 171904 (2009).
  10. 10 C. Nagel, K. Rätzke, E. Schmidtke, J. Wolff, U. Geyer, and F. Faupel, Phys. Rev. B 57, 10224 (1998).
  11. 11 C. Nagel, K. Rätzke, E. Schmidtke, F. Faupel, and W. Ulfert, Phys. Rev. B 60, 9212 (1999).
  12. 12 P. Asoka-Kumar, J. Hartley, R. Howell, P. A. Sterne, and T. G. Nieh, Appl. Phys. Lett. 77, 1973 (2000).
  13. 13 A. Ishii, F. Hori, A. Iwase, Y. Fukumoto, Y. Yokoyama, and T. J. Konno, Mater. Trans. 49, 1975 (2008).
  14. 14 B. Zhang, D. Q. Zhao, M. X. Pan, R. J. Wang, and W. H. Wang, Acta Mater. 54, 3025 (2006).
  15. 15 B. Zhang, D. Q. Zhao, M. X. Pan, W. H. Wang, and A. L. Greer, Phys. Rev. Lett. 94, 205502 (2005).
  16. 16 B. C. Xu, R. J. Xue, and B. Zhang, Intermetallics 32, 1 (2013).
  17. 17 D. Singh, S. Basu, R. K. Mandal, O. N. Srivastava, and R. S. Tiwari, Intermetallics 67, 87 (2015).
  18. 18 M. B. Tang, H. Y. Bai, W. Wang, D. Bogdanov, K. Winzer, K. Samwer, and T. Egami, Phys. Rev. B 75, 172201 (2007).
  19. 19 Y. Zhou, Y. Zhao, B. Y. Qu, L. Wang, R. L. Zhou, Y. C. Wu, and B. Zhang, Intermetallics 56, 56 (2015).
  20. 20 Y. Zhao, B. Zhang, and K. Sato, Intermetallics 88, 1 (2017).
  21. 21 Y. Zhao and B. Zhang, J. Appl. Phys. 122, 115107 (2017).
  22. 22 P. Kirkegaard and M. Eldrup, Comput. Phys. Commun. 7, 401 (1974).
  23. 23 Y. Zhao, D. D. Li, B. Y. Qu, R. L. Zhou, B. Zhang, and K. Sato, Intermetallics 84, 25 (2017).
  24. 24 J. M. C. Robles, E. Ogando, and F. Plazaola, J. Phys.: Condens. Matter 19, 176222 (2007).
  25. 25 D. B. Miracle, Acta Mater. 54, 4317 (2006).
  26. 26 Y. Z. Lu, Y. J. Huang, W. Zheng, and J. Shen, J. Non-Cryst. Solids 358, 1274 (2012).