JJAP Conference Proceedings

JJAP Conf. Proc. 7, 011104 (2018) doi:10.7567/JJAPCP.7.011104

Defect related room temperature ferromagnetism in N-implanted ZnO film

Juping Xu1,2,3, Qiang Li2,3, Bingchuan Gu1, Jiandang Liu1, Bangjiao Ye1

  1. 1State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
  2. 2Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
  3. 3Dongguan Neutron Science Center, Dongguan 523803, China
  • Received August 30, 2017
  • PDF (906 KB) |

Abstract

Ion implantation was used to introduce N-ions into a ZnO film, which was deposited on sapphire by pulsed-laser deposition. The implantation fluence of N-ions was about 5 × 1016 cm−2. The annealing behavior of ferromagnetism and structures of the N-implanted ZnO sample were determined by a vibrating sample magnetometer and X-ray diffraction, respectively. Positron annihilation spectroscopy and Raman spectroscopy were also employed to investigate the defect conditions in the sample. We observed that room temperature ferromagnetism can be introduced by VZn-related defect-complexes instead of only by substitutional N-ions. The results were supported by ab initio calculations based on density functional theory. Also, the possibility of oxygen vacancies as the origin of the ferromagnetism was clearly ruled out.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 R. Kumar, F. Singh, B. Angadi, J.-W. Choi, W.-K. Choi, K. Jeong, J.-H. Song, M. W. Khan, J. P. Srivastava, A. Kumar, and R. P. Tandon, J. Appl. Phys. 100, 113708 (2006).
  2. 2 D. Mukherjee, P. Mukherjee, H. Srikanth, and S. Witanachchi, J. Appl. Phys. 111, 07C318 (2012).
  3. 3 Q. Li, Y. Wang, J. Liu, W. Kong, and B. Ye, Appl. Surf. Sci. 289, 42 (2014).
  4. 4 G. Ciatto, A. Di Trolio, E. Fonda, P. Alippi, A. M. Testa, and A. A. Bonapasta, Phys. Rev. Lett. 107, 127206 (2011).
  5. 5 D. Li, D. K. Li, H. Z. Wu, F. Liang, W. Xie, C. W. Zou, and L. X. Shao, J. Alloys Compd. 591, 80 (2014).
  6. 6 K. Rainey, J. Chess, J. Eixenberger, D. A. Tenne, C. B. Hanna, and A. Punnoose, J. Appl. Phys. 115, 17D727 (2014).
  7. 7 T.-L. Phan, Y. D. Zhang, D. S. Yang, N. X. Nghia, T. D. Thanh, and S. C. Yu, Appl. Phys. Lett. 102, 072408 (2013).
  8. 8 N. A. Spaldin, Phys. Rev. B 69, 125201 (2004).
  9. 9 M. Khalid, A. Setzer, M. Ziese, P. Esquinazi, D. Spemann, A. Pöppl, and E. Goering, Phys. Rev. B 81, 214414 (2010).
  10. 10 H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett. 99, 127201 (2007).
  11. 11 X. Xue, L. Liu, Z. Wang, and Y. Wu, J. Appl. Phys. 115, 033902 (2014).
  12. 12 H. Wu, A. Stroppa, S. Sakong, S. Picozzi, M. Scheffler, and P. Kratzer, Phys. Rev. Lett. 105, 267203 (2010).
  13. 13 S. Akbar, S. K. Hasanain, M. Abbas, S. Ozcan, B. Ali, and S. I. Shah, Solid State Commun. 151, 17 (2011).
  14. 14 Z. Q. Chen, T. Sekiguchi, X. L. Yuan, M. Maekawa, and A. Kawasuso, J. Phys.: Condens. Matter 16, S293 (2004).
  15. 15 Q. Li, Y. Wang, L. Fan, J. Liu, W. Kong, and B. Ye, Scr. Mater. 69, 694 (2013).
  16. 16 Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, and M. Grundmann, Appl. Phys. Lett. 92, 082508 (2008).
  17. 17 Z. Hang, W. Z. Guang, P. L. Long, W. K. Fang, Y. C. Feng, S. T. Long, S. J. Rong, M. Y. Zhun, G. Jie, S. Y. Bin, and Z. Y. Bin, Nucl. Phys. Rev. 27, 87 (2010).
  18. 18 L. S. Vlasenko and G. D. Watkins, Phys. Rev. B 72, 035203 (2005).
  19. 19 J. Kennedy, B. Sundrakannan, R. S. Katiyar, A. Markwitz, Z. Li, and W. Gao, Curr. Appl. Phys. 8, 291 (2008).
  20. 20 J. B. Wang, H. M. Zhong, Z. F. Li, and W. Lu, Appl. Phys. Lett. 88, 101913 (2006).
  21. 21 J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, J. Oila, and K. Saarinen, Appl. Phys. Lett. 82, 40 (2003).
  22. 22 A. van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, AIP Conf. Proc. 218, 171 (1991).
  23. 23 W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2001).
  24. 24 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
  25. 25 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  26. 26 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).