JJAP Conference Proceedings

JJAP Conf. Proc. 7, 011105 (2018) doi:10.7567/JJAPCP.7.011105

Effect of helium irradiation fluence on HenVm cluster evolution in nickel studied by positron annihilation spectroscopy

Yihao Gong1,2, Shuoxue Jin1, Eryang Lu1, Te Zhu1,2, Ligang Song1,2, Daqing Yuan3, Baoyi Wang1,2, Xingzhong Cao1

  1. 1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  2. 2University of Chinese Academy of Sciences, Beijing 100039, China
  3. 3China Institute of Atomic Energy, Beijing 102413, China
  • Received October 30, 2017
  • PDF (715 KB) |

Abstract

Polycrystalline nickel was irradiated using 50 keV He ions at room temperature. The irradiated fluences were 5 × 1013, 5 × 1014, and 5 × 1015 He+ cm−2, respectively. Positron annihilation Doppler broadening spectroscopy (DBS) was used to characterize the irradiation-induced defect evolution. The DBS results show that a large amount of vacancy defects were introduced in the specimens after helium irradiation. In addition, the DBS data could be also interpreted as the formation of helium-vacancy (HenVm) clusters due to combination between vacancies and helium atoms.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 L. Mathieu, D. Heuer, E. Merle-Lucotte, R. Brissot, C. Le Brun, E. Liatard, J. M. Loiseaux, O. Méplan, and A. Nuttin, Nucl. Sci. Eng. 161, 78 (2009).
  2. 2 L. Mathieu, D. Heuer, R. Brissot, C. Garzenne, C. Le Brun, D. Lecarpentier, E. Liatard, J. M. Loiseaux, O. Méplan, E. Merle-Lucotte, A. Nuttin, E. Walle, and J. Wilson, Prog. Nucl. Energy 48, 664 (2006).
  3. 3 C.-W. Sun, R. Hui, W. Qu, and S. Yick, Corros. Sci. 51, 2508 (2009).
  4. 4 M. D. Bermejo and M. J. Cocero, AIChE J. 52, 3933 (2006).
  5. 5 S. Saini, R. Menon, S. K. Sharma, A. P. Srivastava, S. Mukherjee, P. Y. Nabhiraj, P. K. Pujari, D. Srivastava, and G. K. Dey, J. Nucl. Mater. 479, 279 (2016).
  6. 6 E. E. Bloom, J. Nucl. Mater. 258, 7 (1998).
  7. 7 J. Chen, Z. Y. He, and P. Jung, Acta Mater. 54, 1607 (2006).
  8. 8 R. Vassen, H. Trinkaus, and P. Jung, Phys. Rev. B 44, 4206 (1991).
  9. 9 D. Kramer, H. R. Brager, C. G. Rhodes, and A. G. Pard, J. Nucl. Mater. 25, 121 (1968).
  10. 10 H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, and M. Kiritani, Mater. Sci. Eng. A 350, 95 (2003).
  11. 11 C. D. Hardie, C. A. Williams, S. Xu, and S. G. Roberts, J. Nucl. Mater. 439, 33 (2013).
  12. 12 G. E. Lee-Whiting, Phys. Rev. 97, 1557 (1955).
  13. 13 G. W. Egeland, J. A. Valdez, S. A. Maloy, K. J. McClellan, K. E. Sickafus, and G. M. Bond, J. Nucl. Mater. 435, 77 (2013).
  14. 14 J. F. Ziegler, Nucl. Instrum. Methods 168, 17 (1980).
  15. 15 J. Qiu, Y. Xin, X. Ju, L. P. Guo, B. Y. Wang, Y. R. Zhong, Q. Y. Huang, and Y. C. Wu, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 3162 (2009).
  16. 16 H. Huomo, A. Vehanen, M. D. Bentzon, and P. Hautojarvi, Phys. Rev. B 35, 8252 (1987).
  17. 17 M. Abdelrahman, Jpn. J. Appl. Phys. 36, 6530 (1997).
  18. 18 C. H. Hodges, Phys. Rev. Lett. 25, 284 (1970).
  19. 19 R. M. Nieminen and J. Laakkonen, Appl. Phys. 20, 181 (1979).
  20. 20 H. F. Gong, C. B. Wang, W. Zhang, J. Xu, P. Huai, H. Q. Deng, and W. Y. Hu, Nucl. Instrum. Methods Phys. Res., Sect. B 368, 75 (2016).
  21. 21 J. Baram and M. Rosen, Phys. Status Solidi A 16, 263 (1973).
  22. 22 X. L. Zhou, H. F. Huang, R. Xie, G. J. Thorogood, C. Yang, Z. J. Li, and H. J. Xu, J. Nucl. Mater. 467, 848 (2015).
  23. 23 W. D. Wilson, C. L. Bisson, and M. I. Baskes, Phys. Rev. B 24, 5616 (1981).
  24. 24 M. I. Baskes and W. D. Wilson, Phys. Rev. B 27, 2210 (1983).
  25. 25 X. B. Liu, R. S. Wang, J. Jiang, Y. C. Wu, C. H. Zhang, A. Ren, C. L. Xu, and W. J. Qian, J. Nucl. Mater. 451, 249 (2014).