JJAP Conference Proceedings

JJAP Conf. Proc. 7, 011106 (2018) doi:10.7567/JJAPCP.7.011106

Influence of copper content and pre-treatment on the structure of ZnS : Cu thin films by sulfidation

Ligang Song1,2, Peng Zhang1, Xingzhong Cao1, Shuoxue Jin1, Rengang Zhang3, Baoyi Wang1

  1. 1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  2. 2University of Chinese Academy of Sciences, Beijing 100039, China
  3. 3College of Science, Wuhan University of Science and Technology, Wuhan 430000, China
  • Received October 31, 2017
  • PDF (2.7 MB) |


ZnS : Cu thin films were prepared at 440 °C by sulfuring Zn : Cu thin films which were grown by magnetron sputtering with zinc targets covered with different areas of copper foil to vary the Cu content. As the area of copper increases, the morphology of the ZnS : Cu thin films becomes more uniform and dense. Owning to lower mobility of copper atoms that inhibit the mass aggregation of zinc, the aggregation in Zn : Cu films gradually disappears. After sulfuring the thin films with higher copper content, the concentration of both surface-holes and defects decreases. Annealing the prefabricated Zn : Cu thin films can improve the quality of ZnS : Cu thin films. Notably, the increasing Cu content contributes more to the quality of ZnS : Cu thin films than annealing. Among the samples with increasing cooper content, the defects in the thin films tends to be of only one type.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 S. Martínez-Martínez, S. A. Mayén-Hernández, F. de Moure-Flores, M. C. Arenas-Arrocena, E. Campos-González, M. A. Zamora-Antuñano, V. M. Arellano-Badillo, and J. Santos-Cruz, Vacuum 130, 154 (2016).
  2. 2 W. Zhang, X. Zeng, J. Lu, and H. Chen, Mater. Res. Bull. 48, 3843 (2013).
  3. 3 H. M. M. N. Hennayaka and H. S. Lee, Thin Solid Films 548, 86 (2013).
  4. 4 M. A. Lahiji and A. A. Ziabari, Physica B 501, 146 (2016).
  5. 5 N. Prasad and K. Balasubramanian, Spectrochim. Acta, Part A 173, 687 (2017).
  6. 6 W. Chamorro, T. S. Shyju, P. Boulet, S. Migot, J. Ghanbaja, P. Miska, P. Kuppusami, and J. F. Pierson, RSC Adv. 6, 43480 (2016).
  7. 7 W. S. Ni and Y. J. Lin, Appl. Phys. A 119, 1127 (2015).
  8. 8 M. Dong, P. Zhou, C. Jiang, B. Cheng, and J. Yu, Chem. Phys. Lett. 668, 1 (2017).
  9. 9 R. Woods-Robinson, J. K. Cooper, X. J. Xu, L. T. Schelhas, V. L. Pool, A. Faghaninia, C. S. Lo, M. F. Toney, I. D. Sharp, and J. W. Ager, III, Adv. Electron. Mater. 2, 1500396 (2016).
  10. 10 S. V. Svechnikov, L. V. Zav’yalova, N. N. Roshchina, V. E. Rodionov, V. S. Khomchenko, L. I. Berezhinskii, I. V. Prokopenko, P. M. Litvin, O. S. Litvin, Y. V. Kolomzarov, and Y. A. Tsyrkunov, Semiconductors 34, 1128 (2000).
  11. 11 X. Y. Chu, X. N. Wang, J. H. Li, D. Yao, X. Fang, F. Fang, Z. P. Wei, and X. H. Wang, Chin. Phys. B 24, 067805 (2015).
  12. 12 V. Khomchenko, V. Rodionov, L. Zavyalova, G. Svechnikov, N. Roshchina, V. Khachatryan, A. Savin, Y. Bacherikov, O. Marchilo, Y. Tzyrkunov, and J. Stiles, Semicond. Sci. Technol. 18, 512 (2003).
  13. 13 R. G. Zhang, B. Y. Wang, L. Wei, X. Li, Q. S. Xu, S. J. Peng, I. Kurash, and H. J. Qian, Vacuum 86, 1210 (2012).
  14. 14 I. Bezverkhyy, J. Skrzypski, O. Safonova, and J.-P. Bellat, J. Phys. Chem. C 116, 14423 (2012).
  15. 15 T. K. Pathak, V. Kumar, L. P. Purohit, H. C. Swart, and R. E. Kroon, Physica E 84, 530 (2016).
  16. 16 J.-S. Lee and S. M. Wiederhorn, J. Am. Ceram. Soc. 87, 1319 (2004).
  17. 17 B. Peng, R. X. Jia, Y. T. Wang, L. P. Dong, J. C. Hu, and Y. M. Zhang, AIP Adv. 6, 095201 (2016).