JJAP Conference Proceedings

JJAP Conf. Proc. 7, 011201 (2018) doi:10.7567/JJAPCP.7.011201

Pd nanoparticles entrapped in chitosan superfine fibers as a highly active and stable catalyst for the Mizoroki–Heck reaction

Linjun Shao, Yijun Du, Chenze Qi

  1. Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received August 30, 2017
  • PDF (474 KB) |

Abstract

Pd/chitosan/polyacrylate sodium composite fibers (Pd@CS/PAA) with average diameter of (152 ± 30) nm were prepared by electrospinning. The composite fibers were subsequently cross-linked at 160 °C to improve their solvent stability. TEM results showed that entrapment of palladium species into the composite fibers could increase its dispersion. The composite fibers were found to be very active and stable to catalyze the Mizoroki–Heck reaction of iodobenzene with n-butyl acrylate. Therefore, a highly active and stable heterogeneous palladium catalyst can be prepared by entrapping the palladium nanoparticles in CS/PAA composite fibers.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 N. T. S. Phan, M. Van Der Sluys, and C. W. Jones, Adv. Synth. Catal. 348, 609 (2006).
  2. 2 D. Astruc, Inorg. Chem. 46, 1884 (2007).
  3. 3 T. N. Glasnov, S. Findenig, and C. O. Kappe, Chem.—Eur. J. 15, 1001 (2009).
  4. 4 C. E. Garrett and K. Prasad, Adv. Synth. Catal. 346, 889 (2004).
  5. 5 J. G. de Vries and S. D. Jackson, Catal. Sci. Technol. 2, 2009 (2012).
  6. 6 Y. F. Wang, Z. M. Xiao, and L. Wu, Curr. Org. Chem. 17, 1325 (2013).
  7. 7 H. J. Jeon and Y. M. Chung, Appl. Catal. B 210, 212 (2017).
  8. 8 S. S. Soomro, F. L. Ansari, K. Chatziapostolou, and K. Köhler, J. Catal. 273, 138 (2010).
  9. 9 M. Gopiraman, H. Bang, G. H. Yuan, C. Yin, K.-H. Song, J. S. Lee, and I. M. Chung, Carbohydr. Polym. 132, 554 (2015).
  10. 10 L. Gardella, A. Basso, M. Prato, and O. Monticelli, ACS Appl. Mater. Interfaces 5, 7688 (2013).
  11. 11 F. Wang, S. Tang, Y. Yu, L. Wang, B. Yin, and X. Li, Chin. J. Catal. 35, 1921 (2014).
  12. 12 M. Maity and U. Maitra, J. Mater. Chem. A 2, 18952 (2014).
  13. 13 D. D. Yu, J. Bai, J. Z. Wang, and C.-P. Li, J. Inorg. Organomet. Polym. Mater. 26, 914 (2016).
  14. 14 I. Savva, A. S. Kalogirou, A. Chatzinicolaou, P. Papaphilippou, A. Pantelidou, E. Vasile, E. Vasile, P. A. Koutentis, and T. Krasia-Christoforou, RSC Adv. 4, 44911 (2014).
  15. 15 L. J. Shao, C. Z. Qi, and X.-M. Zhang, RSC Adv. 4, 53105 (2014).
  16. 16 K. Sun and Z. H. Li, Express Polym. Lett. 5, 342 (2011).
  17. 17 M. I. Shariful, S. B. Sharif, J. J. L. Lee, U. Habiba, B. C. Ang, and M. A. Amalina, Carbohydr. Polym. 157, 57 (2017).
  18. 18 T. Mizoroki, K. Mori, and A. Ozaki, Bull. Chem. Soc. Jpn. 44, 581 (1971).
  19. 19 R. F. Heck and J. P. Nolley, J. Org. Chem. 37, 2320 (1972).