JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 7, 011203 (2018) doi:10.7567/JJAPCP.7.011203

Aging induced enhancement of pore interconnectivity of porous silica investigated by nitrogen adsorption and cyclic voltammetry

Xiaoyu He1, Bangyun Xiong2, Lei Liu1, Xiaonan Wang1, Chunqing He1

  1. 1Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
  2. 2School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
  • Received October 23, 2017
  • PDF (600 KB) |

Abstract

Pore interconnectivities of mesoporous silica prepared with precursor sols aged for various times were investigated by N2 adsorption–desorption measurement and cyclic voltammetry. With increasing aging time of the precursor sol to 4 days, an abnormal decrease in both total open volumes and specific surface areas was found. However, with further increasing the aging time to 15 days, the total open volumes and specific surface areas dramatically increased, indicative of the formation of highly interconnected pores and a remarkable increase in the silica porosity. This was further confirmed by cyclic voltammetry measurements using aqueous potassium iodide solutions on the corresponding silica films, which showed a significant rise in redox current and total charge $\mathcal{Q}$ across the films prepared after a longer time aging of precursor sols. This rise can be attributed to the diffusion of I across the silica films with enhanced pore interconnectivity, despite of the decline in total porosity for some silica samples.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 Y. Zhang, E. C. Judkins, D. R. McMillin, D. Mehta, and T. Ren, ACS Catal. 3, 2474 (2013).
  2. 2 S. Saha, K. C.-F. Leung, T. D. Nguyen, J. F. Stoddart, and J. I. Zink, Adv. Funct. Mater. 17, 685 (2007).
  3. 3 H. Bao, J. Yang, Y. Huang, Z. P. Xu, N. Hao, Z. Wu, G. Q. Lu, and D. Zhao, Nanoscale 3, 4069 (2011).
  4. 4 M. O. Adebajo, R. L. Frost, J. T. Kloprogge, O. Carmody, and S. Kokot, J. Porous Mater. 10, 159 (2003).
  5. 5 P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Chem. Mater. 11, 2813 (1999).
  6. 6 V. C. Menon and S. Komarneni, J. Porous Mater. 5, 43 (1998).
  7. 7 J. Brown, R. Richer, and L. Mercier, Microporous Mesoporous Mater. 37, 41 (2000).
  8. 8 X. Tang, B. Xiong, Q. Li, W. Mao, W. Xiao, P. Fang, and C. He, Electrochim. Acta 168, 365 (2015).
  9. 9 B. Xiong, W. Mao, X. Tang, and C. He, J. Appl. Phys. 115, 094303 (2014).
  10. 10 C. He, T. Oka, Y. Kobayashi, N. Oshima, T. Ohdaira, A. Kinomura, and R. Suzuki, Appl. Surf. Sci. 255, 183 (2008).
  11. 11 R. Zaleski, M. Gorgol, A. Kierys, and J. Goworek, Adsorption 22, 745 (2016).
  12. 12 H. J. Shin, R. Ryoo, M. Kruk, and M. Jaroniec, Chem. Commun., 349 (2001).
  13. 13 C. He, M. Muramatsu, N. Oshima, T. Ohdaira, A. Kinomura, and R. Suzuki, Phys. Lett. A 355, 73 (2006).
  14. 14 X. Zhang, W. Wu, J. Wang, and C. Liu, Thin Solid Films 515, 8376 (2007).
  15. 15 C. McDonagh, F. Sheridan, T. Butler, and B. D. MacCraith, J. Non-Cryst. Solids 194, 72 (1996).
  16. 16 S.-B. Jung and H.-H. Park, Thin Solid Films 494, 320 (2006).
  17. 17 C. He, R. Suzuki, T. Ohdaira, N. Oshima, A. Kinomura, M. Muramatsu, and Y. Kobayashi, Chem. Phys. 331, 213 (2007).
  18. 18 J. R. Matos, M. Kruk, L. P. Mercuri, M. Jaroniec, L. Zhao, T. Kamiyama, O. Terasaki, T. J. Pinnavaia, and Y. Liu, J. Am. Chem. Soc. 125, 821 (2003).
  19. 19 B. Xiong, W. Mao, J. Yue, X. Xu, and C. He, Phys. Lett. A 378, 249 (2014).
  20. 20 M. Klingstedt, K. Miyasaka, K. Kimura, D. Gu, Y. Wan, D. Zhao, and O. Terasaki, J. Mater. Chem. 21, 13664 (2011).
  21. 21 A. Walcarius and A. Kuhn, Trac-Trends Anal. Chem. 27, 593 (2008).
  22. 22 G. A. Mabbott, J. Chem. Educ. 60, 697 (1983).
  23. 23 K. S. W. Sing, J. Porous Mater. 2, 5 (1995).
  24. 24 K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, and T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985).
  25. 25 P. Revol, D. Perret, F. Bertin, F. Fusalba, V. Rouessac, A. Chabli, G. Passemard, and A. Ayral, J. Porous Mater. 12, 113 (2005).