JJAP Conference Proceedings

JJAP Conf. Proc. 7, 011301 (2018) doi:10.7567/JJAPCP.7.011301

Progress report on construction of a low-energy positron diffraction (LEPD) experiment station at KEK

Ken Wada1, Tetsuroh Shirasawa2, Izumi Mochizuki3, Masanori Fujinami4, Toshio Takahashi5, Masaki Maekawa1, Atsuo Kawasuso1, Masao Kimura3, Toshio Hyodo3

  1. 1Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma 370-1292, Japan
  2. 2National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
  3. 3Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
  4. 4Department of Applied Chemistry, Chiba University, Inage, Chiba 263-8522, Japan
  5. 5Department of Physics, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
  • Received October 02, 2017
  • PDF (539 KB) |


A low-energy positron diffraction (LEPD) experiment station was developed at the Slow Positron Facility, High Energy Accelerator Research Organization (KEK). An electron-accelerator-based slow-positron beam with an energy of 5 keV was magnetically transported and focused on a transmission-type Ni remoderator to achieve a 50 eV–500 eV brightness-enhanced beam in a non-magnetic space. A LEPD detector with center holed retarding meshes, Chevron-type microchannel plates, and a delay-line detector (DLD) was installed. A newly developed pulse stretching system was used to stretch the initial positron-pulse width of 1.2 µs to 200 µs–20 ms to avoid multiple hit events within the position analysis time of the DLD.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 M. A. Van Hove, H. W. William, and C. M. Chan, Low-Energy Electron Diffraction: Experiment, Theory and Surface Structure Determination (Springer Science & Business Media, 2012) Vol. 6.
  2. 2 S. Y. Tong, H. Huang, and X. Q. Guo, Phys. Rev. Lett. 69, 3654 (1992).
  3. 3 I. J. Rosenberg, A. H. Gneiss, and K. F. Canter, Phys. Rev. Lett. 44, 1139 (1980).
  4. 4 T. N. Horsky, G. R. Brandes, K. F. Canter, C. B. Duke, S. F. Horng, A. Kahn, D. L. Lessor, A. P. Mills, Jr., A. Paton, K. Stevens, and K. Stiles, Phys. Rev. Lett. 62, 1876 (1989).
  5. 5 S. Y. Tong, Surf. Sci. Lett. 457, L432 (2000).
  6. 6 C. B. Duke and D. L. Lessor, Surf. Sci. 225, 81 (1990).
  7. 7 K. Wada, T. Hyodo, A. Yagishita, M. Ikeda, S. Ohsawa, T. Shidara, K. Michishio, T. Tachibana, Y. Nagashima, Y. Fukaya, M. Maekawa, and A. Kawasuso, Eur. Phys. J. D 66, 37 (2012).
  8. 8 K. Wada, T. Hyodo, T. Kosuge, Y. Saito, M. Ikeda, S. Ohsawa, T. Shidara, K. Michishio, T. Tachibana, H. Terabe, R. H. Suzuki, Y. Nagashima, Y. Fukaya, M. Maekawa, I. Mochizuki, and A. Kawasuso, J. Phys.: Conf. Ser. 443, 012082 (2013).
  9. 9 T. Hyodo, K. Wada, I. Mochizuki, M. Kimura, N. Toge, T. Shidara, Y. Fukaya, M. Maekawa, A. Kawasuso, S. Iida, K. Michishio, and Y. Nagashima, J. Phys.: Conf. Ser. 791, 012003 (2017).
  10. 10 K. Wada, T. Shirasawa, I. Mochizuki, M. Fujinami, M. Masaki, A. Kawasuso, T. Takahashi, and T. Hyodo, e-J. Surf. Sci. Nanotechnol. 16, 313 (2018).
  11. 11 M. Fujinami, S. Jinno, M. Fukuzumi, T. Kawaguchi, K. Oguma, and T. Akahane, Anal. Sci. 24, 73 (2008).
  12. 12 K. Wada, M. Masaki, I. Mochizuki, A. Kawasuso, M. Kimura, and T. Hyodo, in preparation.
  13. 13 C. B. Duke, A. Paton, A. Lazarides, D. Vasumathi, and K. F. Canter, Phys. Rev. B 55, 7181 (1997).