JJAP Conference Proceedings

JJAP Conf. Proc. 7, 011303 (2018) doi:10.7567/JJAPCP.7.011303

Conceptual design of MuSR spectrometer for EMuS using Monte Carlo simulation

Ziwen Pan1,2, Xiaojie Ni1,2, Bangjiao Ye1,2

  1. 1State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026, China
  2. 2Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
  • Received October 11, 2017
  • PDF (1.8 MB) |

Abstract

The Muon Spin Rotation/Relaxation/Resonance (MuSR) technique uses a muon beam to probe the structure and dynamics of matter at a microscopic level. An experimental muon source (EMuS) will be built at the China Spallation Neutron Source (CSNS). A MuSR spectrometer was proposed to be constructed in a sub-branch of EMuS. In this contribution, the size of the scintillator and light guides of the polarized MuSR spectrometer were optimized by Geant4. The simulation shows that a scintillator with a length of 175 mm can cover a large solid angle (43%) and get a good detection efficiency and collection efficiency. Double counts can be minimized with a scintillator thickness of 5 mm.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 A. Y. Yaouanc and P. D. D. Réotier, Muon Spin Rotation, Relaxation, and Resonance (Oxford University Press, Oxford, U.K., 2011) 1st ed., Chap. 1, p. 5.
  2. 2 J. E. Sonier, Muon Spin Rotation/Relaxation/Resonance (µsR) [http://www.chem.ubc.ca/sites/default/files/users/dgf/musrbrochure.pdf].
  3. 3 K. G. Lynn, Hyperfine Interactions 8, 687 (1981).
  4. 4 M. Doyama, Hyperfine Interactions 8, 701 (1981).
  5. 5 S. Wenner, K. Matsuda, K. Nishimura, J. Banhart, T. Matsuzaki, D. Tomoni, F. L. Pratt, M. Liu, Y. Yan, C. D. Marioara, and R. Holmestad, 13th Int. Conf. on Aluminum Alloys, 2012, p. 37.
  6. 6 C. Boekema, R. H. Heffner, R. L. Huston, M. Leno, and M. E. Schillaci, Phys. Rev. B 26, 2341 (1982).
  7. 7 K. W. Kehr, D. Richter, and J.-M. Welter, Phys. Rev. B 26, 567 (1982).
  8. 8 K. Fürderer, K.-P. Döring, M. Gladisch, N. Haas, D. Herlach, J. Major, H.-J. Mundinger, J. Rosenkranz, W. Schäfer, L. Schimmele, M. Schmolz, W. Schwarz, and A. Seeger, Hyperfine Interactions 31, 81 (1986).
  9. 9 D. M. Herlach, K.-P. Döring, N. Hass, K. Fürderer, M. Gladisch, W. Jacobs, H.-J. Mundiger, J. Rosenkranz, H. Orth, H. E. Schaefer, W. Schäfer, M. Schmolz, A. Seeger, K.-P. Arnold, and T. Aurenz, Mater. Sci. Forum 15–18, 71 (1987).
  10. 10 A. I. Morosov and A. S. Sigov, J. Phys.: Condens. Matter 2, 505 (1990).
  11. 11 S. Wenner, R. Holmestad, K. Matsuda, K. Nishimura, T. Matsuzaki, D. Tomono, F. L. Pratt, and C. D. Marioara, Phys. Rev. B 86, 104201 (2012).
  12. 12 A. D. Hillier, D. J. Adams, P. J. Baker, A. Bekasovs, F. C. Coomer, S. P. Cottrell, S. D. Higgins, S. J. S. Jago, K. G. Jones, J. S. Lord, A. Markvardsen, P. G. Parker, J. N. T. Peck, F. L. Pratt, M. T. F. Telling, and R. E. Williamson, J. Phys.: Conf. Ser. 551, 012067 (2014).
  13. 13 F. Foroughi, E. Morenzoni, T. Prokscha, M. Daum, K. Deiters, D. George, D. Herlach, C. Petitjean, D. Renker, and V. Vrankovis, Hyperfine Interactions 138, 483 (2001).
  14. 14 J. L. Beveridge, J. Doornbos, and D. M. Garner, Hyperfine Interactions 32, 907 (1986).
  15. 15 Y. Miyake, K. Shimomura, N. Kawamura, P. Strasser, A. Koda, H. Fujimori, Y. Ikedo, S. Makimura, Y. Kobayashi, J. Nakamura, K. Kojima, T. Adachi, R. Kadono, S. Takeshita, K. Nishiyama, W. Higemoto, T. Ito, K. Nagamine, H. Ohata, Y. Makida, M. Yoshida, T. Okamura, R. Okada, and T. Ogitsu, J. Phys.: Conf. Ser. 551, 012061 (2014).
  16. 16 J.-Y. Tang, S.-N. Fu, H.-T. Jing, H.-Q. Tang, W. Jie, and H.-H. Xia, Chin. Phys. C 34, 121 (2010).
  17. 17 H. T. Jing, J. Y. Tang, H. Q. Tang, H. H. Xia, T. J. Liang, Z. Y. Zhou, Q. P. Zhong, and X. C. Ruan, Nucl. Instrum. Methods Phys. Res., Sect. A 621, 91 (2010).
  18. 18 N. Vassilopoulos, Z. Hou, Y. Yuan, and G. Zhao, Proc. of IPAC, 2017, p. 2871.
  19. 19 S. Agostinelli, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
  20. 20 R. J. da Silva Afonso, P. J. Baker, J. S. Lord, and A. D. Hillier, RAL Tech. Rep. 001 (2015).
  21. 21 J. W. Nam, Y. I. Choi, D. W. Kim, J. H. Kim, B. C. K. Casey, M. Jones, S. L. Olsen, M. Peters, J. L. Rodriguez, G. Varner, Y. Zheng, N. Gabyshev, H. Kichimi, J. Yashima, J. Zhang, T. H. Kim, and Y. J. Kwon, Nucl. Instrum. Methods Phys. Res., Sect. A 491, 54 (2002).
  22. 22 Web [http://www.eljentechnology.com/products/plastic-scintillators/ej-200-ej-204-ej-208-ej-212].
  23. 23 T. J. Roberts, D. Huang, S. Ahmed, D. M. Kaplan, and L. Spentzouris, Proc. EPAC08, 2008, p. 2776.
  24. 24 K. Sedlak, A. Stoykov, and R. Scheuermann, Nucl. Instrum. Methods Phys. Res., Sect. A 696, 40 (2012).