JJAP Conference Proceedings

JJAP Conf. Proc. 8, 011002 (2020) doi:10.7567/JJAPCP.8.011002

Observation of Magnesium-Induced Crystallization (Mg-MIC) of a-Si Thin Film

Takashi Ikehata, Ryota Sasajima, Motomu Saijo, Naoyuki Sato, Haruhiko Udono

  1. Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
  • Received September 30, 2019
  • PDF (2.9 MB) |

Abstract

Magnesium induced crystallization (Mg-MIC), that is, the low temperature crystallization process of an amorphous silicon (a-Si) film activated by magnesium has first been investigated. The crystallization temperature is evaluated as low as 450 °C from Raman spectroscopy in contrast to 600–800 °C in the solid phase crystallization (SPC) process (only a-Si film is heated). The crystallization is found to occur via the formation of intermediate phase: the silicide (Mg2Si) as reported in the Ni-MIC studies. A filamentary structure expected from the previous studies is not observed.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 A. Vantomme, G. Langouche, J. E. Mahan, and J. P. Becker, Microelectron. Eng. 50, 237 (2000).
  2. 2 D. Tamura, R. Nagai, K. Sugimoto, H. Udono, I. Kikuma, H. Tajima, and I. Ohsugi, Thin Solid Films 515, 8272 (2007).
  3. 3 T. Kato, Y. Sago, and H. Fujiwara, J. Appl. Phys. 110, 063723 (2011).
  4. 4 M. Saijo, K. Kunitake, R. Sasajima, Y. Takagi, N. Sato, and T. Ikehata, JJAP Conf. Proc. 5, 011302 (2017).
  5. 5 D. Y. Kim, M. Gowtham, M. S. Shim, and J. Yi, Mater. Sci. Semicond. Process. 7, 433 (2004).
  6. 6 Y. Kawazu, H. Kudo, S. Onari, and T. Arai, Jpn. J. Appl. Phys. 29, 2698 (1990).
  7. 7 T. J. Konno and R. Sinclair, Mater. Sci. Eng. A 179–180, 426 (1994).
  8. 8 G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Fong, and M.-A. Hasan, J. Appl. Phys. 69, 6394 (1991).
  9. 9 B. Mohadjeri, J. Linnros, B. G. Svensson, and M. Ostling, Phys. Rev. Lett. 68, 1872 (1992).
  10. 10 W. Knaepen, C. Detavernier, R. L. Van Meirhaeghe, J. J. Sweet, and C. Lavoie, Thin Solid Films 516, 4946 (2008).
  11. 11 O. Nast and A. Hartmann, J. Appl. Phys. 88, 716 (2000).
  12. 12 C. Hayzelden and J. Batstone, J. Appl. Phys. 73, 8279 (1993).
  13. 13 Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, J. Appl. Phys. 84, 194 (1998).
  14. 14 N. Vouroutzis, J. Stoemenos, N. Frangis, G. Z. Radnoczi, D. Knez, F. Hofer, and B. Pecz, Sci. Rep. 9, 2844 (2019).
  15. 15 O. Shekoofa, J. Wang, D. Li, Y. Luo, C. Sun, Z. Hao, Y. Han, B. Xiong, L. Wang, and H. Li, Sol. Energy 173, 539 (2018).
  16. 16 C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, J. Appl. Phys. 94, 3582 (2003).