JJAP Conference Proceedings

JJAP Conf. Proc. 8, 011003 (2020) doi:10.7567/JJAPCP.8.011003

Formation of Mg2Si1−xSnx Thin Films by Co-sputtering and Investigation of their p-type Electrical Conduction

Syotaro Fuse, Hiroshi Katsumata

  1. School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
  • Received September 30, 2019
  • PDF (1.0 MB) |

Abstract

We obtained Mg2Si1−xSnx films on the c-plane sapphire and the (100) CaF2 substrates using the radio frequency (RF) magnetron co-sputtering method under various sputtering area ratio of Mg chips to Mg2Si (Sn) target and a subsequent two-step annealing process up to 400 °C. The X-ray diffraction (XRD) and energy-dispersive X-ray spectrometry (EDS) analysis of the samples confirmed that the obtained films were ternary Mg2Si1−xSnx films with a composition of x ≈ 0.31. Optical microscopy and EDS mapping images of Mg2Si and Mg2Si1−xSnx (x = 0.31) films after annealing at 400 °C showed remarkable Mg desorption from Mg2Si1−xSnx films, but not from Mg2Si films. The Hall effect measurements revealed that all Mg2Si1−xSnx films annealed at 400 °C had a p-type conductivity. The first-principles calculations suggested that a combination of two different types of defects, Sn substitution at Si site (SnSi) and Mg vacancy (VMg), which acts as an acceptor, could be the origin of the p-type conductivity of Mg2Si1−xSnx films.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 D. Tamura, R. Nagai, K. Sugimoto, H. Udono, I. Kikuma, H. Tajima, and I. J. Ohsugi, Thin Solid Films 515, 8272 (2007).
  2. 2 J. E. Mahan, A. Vantomme, G. Langouche, and J. P. Becker, Phys. Rev. B 54, 16965 (1996).
  3. 3 J. J. Pulikkotil, D. J. Singh, S. Auluck, M. Saravanan, D. K. Misra, A. Dhar, and R. C. Budhani, Phys. Rev. B 86, 155204 (2012).
  4. 4 B. Amand and M. Alouani, Phys. Rev. B 64, 033202 (2001).
  5. 5 B. Amand and M. Alouani, Phys. Rev. B 62, 4464 (2000).
  6. 6 M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).
  7. 7 W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).
  8. 8 D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC/Taylor & Francis, 2006) p. 1.
  9. 9 B. Klobes, J. de Boor, A. Alatas, M. Y. Hu, R. Simon, and R. Hermann, Phys. Rev. Mater. 3, 025404 (2019).
  10. 10 H. Peng, C. L. Wang, J. C. Li, H. C. Wang, Y. Sun, and Q. Zheng, Solid State Commun. 152, 821 (2012).
  11. 11 M. Bashir, A. Bashir, S. M. Said, M. Faizul, M. Sabri, D. A. Shnawah, and M. H. Elsheikh, Renewable Sustainable Energy Rev. 37, 569 (2014).
  12. 12 E. N. Nikitin, V. E. N. Tkalenko, V. K. Zaitsev, A. I. Zaslavskii, and A. K. Kuznetsov, Inorg. Mater. 4, 1656 (1968).
  13. 13 H. Le-Quoc, S. Bechu, S. Populoh, A. Weidenkaff, and A. Lacoste, J. Alloys Compd. 546, 138 (2013).
  14. 14 X. Han and G. Shao, J. Mater. Chem. C 3, 530 (2015).
  15. 15 S. Fuse and H. Katsumata, Extended abstract of APAC silicide 2019, 2019, Tue-a-O29.
  16. 16 Web [https://materialsproject.org/materials/mp-1367/].
  17. 17 A. A. Nayeb-Hashemi and J. B. Clark, Phase Diagrams of Binary Magnesium Alloys (ASM International, 1988).
  18. 18 M. Schmid, vapor pressure calculator, https://www.iap.tuwien.ac.at/www/surface/vapor_pressure.