JJAP Conference Proceedings

JJAP Conf. Proc. 8, 011101 (2020) doi:10.7567/JJAPCP.8.011101

Growth of Si Clathrate Films with Various Annealing Conditions

K. Tanaka1, R. Kumar2, T. Maeda1, F. Ohashi1,3, H. S. Jha3, T. Kume1,2,3,4

  1. 1Department of Energy Engineering, the Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
  2. 2Division of Environmental and Renewable Energy Engineering Systems, the Graduate School of Engineering, Gifu University, Gifu 501-1193, Japan
  3. 3Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
  4. 4International Joint Department of Integrated Mechanical Engineering of IITG and GU, the Graduate School of Engineering, Gifu University, Gifu 501-1193, Japan
  • Received October 04, 2019
  • PDF (809 KB) |

Abstract

Si clathrate thin films were fabricated by using Si(111) substrates, Na lumps and NaH powder at various conditions in two steps annealing process. The duration of the first annealing to prepare precursor films affected the thickness and the surface morphology of the final products, i.e., Si clathrate films. The annealing duration of 18 h led to Si clathrate films of 1–2 µm in thickness. Attempts to control the rate of reduction of Na from the precursor films were carried out in the second step annealing under vacuum. The obtained results suggested that the rate of Na reduction affects the structure type (type I or II) of clathrate.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 J. S. Kasper, P. Hagenmuller, M. Pouchard, and C. Cros, Science 150, 1713 (1965).
  2. 2 S. Bobev and S. C. Sevov, J. Solid State Chem. 153, 92 (2000).
  3. 3 K. A. Kovnir and A. V. Shevelkov, Russ. Chem. Rev. 73, 923 (2004).
  4. 4 G. S. Nolas, C. A. Kendziora, J. Gryko, J. Dong, C. W. Myles, A. Poddar, and O. F. Sankey, J. Appl. Phys. 92, 7225 (2002).
  5. 5 G. S. Nolas, M. Beekman, J. Gryko, G. A. Lamberton, Jr., T. M. Tritt, and P. F. McMillan, Appl. Phys. Lett. 82, 910 (2003).
  6. 6 A. Ammar, C. Cros, M. Pouchard, N. Jaussaud, J.-M. Bassat, G. Villeneuve, M. Duttine, M. Ménétrier, and E. Reny, Solid State Sci. 6, 393 (2004).
  7. 7 L. Krishna, L. L. Baranowski, A. D. Martinez, C. A. Koh, P. C. Taylor, A. C. Tamboli, and E. S. Toberer, CrystEngComm 16, 3940 (2014).
  8. 8 K. A. Kovnir and A. V. Shevelkov, Russ. Chem. Rev. 73, 923 (2004).
  9. 9 M. Beekman and G. S. Nolas, J. Mater. Chem. 18, 842 (2008).
  10. 10 G. K. Ramachandran, J. Dong, J. Diefenbacher, J. Gryko, R. F. Marzke, O. F. Sankey, and P. F. McMillan, J. Solid State Chem. 145, 716 (1999).
  11. 11 K. Moriguchi, S. Munetoh, and A. Shintani, Phys. Rev. B 62, 7138 (2000).
  12. 12 K. Moriguchi, S. Munetoh, and A. Shintani, Phys. Rev. B 64, 195409 (2001).
  13. 13 J. Gryko, P. F. McMillan, R. F. Marzke, G. K. Ramachandran, D. Patton, S. K. Deb, and O. F. Sankey, Phys. Rev. B 62, R7707 (2000).
  14. 14 F. Ohashi, Y. Iwai, T. Sugiyama, M. Hattori, T. Ogura, R. Himeno, T. Kume, T. Ban, and S. Nonomura, J. Phys. Chem. Solids 75, 518 (2014).
  15. 15 T. Kume, Y. Iwai, T. Sugiyama, F. Ohashi, T. Ban, S. Sasaki, and S. Nonomura, Phys. Status Solidi C 10, 1739 (2013).
  16. 16 T. Kume, F. Ohashi, K. Sakai, A. Fukuyama, M. Imai, H. Udono, T. Ban, H. Habuchi, H. Suzuki, T. Ikari, S. Sasaki, and S. Nonomura, Thin Solid Films 609, 30 (2016).
  17. 17 T. Kume, F. Ohashi, and S. Nonomura, Jpn. J. Appl. Phys. 56, 05DA05 (2017).
  18. 18 H. Horie, T. Kikudome, K. Teramura, and S. Yamanaka, J. Solid State Chem. 182, 129 (2009).