JJAP Conference Proceedings

JJAP Conf. Proc. 8, 011102 (2020) doi:10.7567/JJAPCP.8.011102

Preparation of Guest Free Type II Si–Ge Clathrate Using Ionic Liquid Method

H. Hisamatsu1, K. Yamada1, F. Ohashi1,2, H. S. Jha2, T. Kume1,2,3

  1. 1Department of Energy Engineering, the Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
  2. 2Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
  3. 3International Joint Department of Integrated Mechanical Engineering of IITG and GU, the Graduate School of Engineering, Gifu University, Gifu 501-1193, Japan
  • Received October 31, 2019
  • PDF (717 KB) |

Abstract

Guest free Type II Si–Ge alloy clathrate exhibits tunable band gap energy depending upon the composition ratio of Si and Ge. In an attempt to synthesize guest free type II Si–Ge alloy clathrates in various Si–Ge compositions, Na4(Si1−yGey)4 precursors were prepared with the variation of y from 0 to 1 and then annealed in a sealed glass tube together with ionic liquid. The obtained samples were characterized by powder XRD experiments and EDX measurements. The synthesis of Si–Ge clathrates were recognized as Si or Ge rich compositions. EDX data and Rietveld analyses of XRD data allowed us to verify the Si–Ge alloy clathrate with low Na content.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 M. Beekman and G. S. Nolas, J. Mater. Chem. 18, 842 (2008).
  2. 2 R. Himeno, T. Kume, F. Ohashi, T. Ban, and S. Nonomura, J. Alloys Compd. 574, 398 (2013).
  3. 3 C. Cros, M. Pouchard, and P. Hagenmuller, Compt. Rend. 260, 4764 (1965).
  4. 4 C. Cros, M. Pouchard, and P. Hagenmuller, J. Solid State Chem. 2, 570 (1970).
  5. 5 J. C. Conesa, C. Tablero, and P. Wahnon, J. Chem. Phys. 120, 6142 (2004).
  6. 6 D. Connétable and X. Blase, Appl. Surf. Sci. 226, 289 (2004).
  7. 7 X. Blase, Phys. Rev. B 67, 035211 (2003).
  8. 8 K. Moriguchi, S. Munetoh, and A. Shintani, Phys. Rev. B 62, 7138 (2000).
  9. 9 J. Dong and O. F. Sankey, J. Phys.: Condens. Matter 11, 6129 (1999).
  10. 10 A. D. Martinez, L. Krishna, L. L. Baranowski, M. T. Lusk, E. S. Toberer, and A. C. Tamboli, IEEE J. Photovoltaics 3, 1305 (2013).
  11. 11 A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, and Y. Grin, Nature 443, 320 (2006).
  12. 12 L. L. Baranowski, L. Krishna, A. D. Martinez, T. Raharjo, V. Stevanović, A. C. Tamboli, and E. S. Toberer, J. Mater. Chem. C 2, 3231 (2014).
  13. 13 X. Ma, F. Xu, T. Atkins, A. M. Goforth, D. Neiner, A. Navrotsky, and S. M. Kauzlarich, Dalton Trans. 46, 10250 (2009).
  14. 14 B. Böhme, A. Guloy, Z. Tang, W. Schnelle, U. Burkhardt, M. Baitinger, and Y. Grin, J. Am. Chem. Soc. 129, 5348 (2007).
  15. 15 H. Morito, K. Monma, and H. Yamane, J. Alloys Compd. 623, 473 (2015).