JJAP Conference Proceedings

JJAP Conf. Proc. 8, 011103 (2020) doi:10.7567/JJAPCP.8.011103

Synthesis of CaF2 Nanostructures from Calcium Silicide Powders in Diluted Aqueous HF Solution

Yoshiki Ono1, Ryohei Ogino2, Masaki Sakaida2, Keigo Sasaki2, Nanae Atsumi1, Yushin Numazawa1, Shogo Itoh1, Tomoya Koga2, Yalei Huang3, Yosuke Shimura1,4, Hirokazu Tatsuoka1, Naohisa Takahashi5

  1. 1Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
  2. 2Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
  3. 3Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
  4. 4Research Institute of Electronics, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
  5. 5Yamaha Advanced Material Research Group, Yamaha Motor Co., Ltd., Iwata, Shizuoka 438-8501, Japan
  • Received December 05, 2019
  • PDF (1.4 MB) |

Abstract

CaF2 nanostructures were synthesized from Ca-silicide powders by a diluted aqueous HF treatment. Commercially-available CaSi2 crystal powders and calcium silicide powders prepared by mechanical alloying were used as the source materials, and CaF2 nanosheet bundles and nanobunches of the CaF2 nanoparticles were obtained, respectively. The morphological property of the resulting CaF2 nanostructures was characterized by electron microscopy. It was found that the morphology of the resulting products depended on the starting materials. In addition, the growth mechanism of the CaF2 nanostructures was discussed from a topological synthesis point of view.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 J. Song, G. Zhi, Y. Zhang, and B. Mei, Nano–Micro Lett. 3, 73 (2011).
  2. 2 M. Secu, J. Nanopart. Res. 13, 2727 (2011).
  3. 3 K. Tahvildari, M. Esmaeili pour, Sh. Ghammamy, and H. Nabipour, Int. J. Nano Dim. 2, 269 (2012).
  4. 4 N. Salah, N. D. Alharbi, S. S. Habib, and S. P. Lochab, J. Nanomater. 2015, 136402 (2015).
  5. 5 Z. Li, Y. Zhang, L. Huang, Y. Yang, Y. Zhao, G. El-Banna, and G. Han, Theranostics 6, 2380 (2016).
  6. 6 L. Sun and L. C. Chow, Dent. Mater. 24, 111 (2008).
  7. 7 W. A. Bala, V. S. Benitha, K. Jeyasubramanian, G. S. Hikku, P. Sankar, and S. V. Kumar, J. Fluorine Chem. 193, 38 (2017).
  8. 8 X. Meng, P. Yuan, K. Sasaki, K. Tsukamoto, S. Kusazaki, Y. Saito, Y. Kumazawa, and H. Tatsuoka, e-J. Surf. Sci. Nanotechnol. 16, 218 (2018).
  9. 9 R. Ramachandran, D. Johnson-McDaniel, and T. T. Salguero, Chem. Mater. 28, 7257 (2016).
  10. 10 Y. Huang, P. Yuan, Y. Kumazawa, S. Kusazaki, Y. Saito, V. Saxena, K. Konishi, Y. Kujime, T. Kato, K. Tanaka, Y. Hayakawa, and H. Tatsuoka, Defect Diffus. Forum 386, 61 (2018).
  11. 11 Y. Warashina, Y. Ito, T. Nakamura, H. Tatsuoka, J. Snyder, M. Tanaka, T. Suemasu, Y. Anma, M. Shimomura, and Y. Hayakawa, e-J. Surf. Sci. Nanotechnol. 7, 129 (2009).
  12. 12 S. A. Hodorowicz, E. K. Hodorowicz, and H. A. Eick, J. Solid State Chem. 50, 180 (1983).
  13. 13 Landolt-Börnstein Semiconductors, ed. O. Madelung, U. Rössler, and M. Schulz (Springer, Berlin/Heidelberg, 2002) Vol. 41.
  14. 14 R. Ogino, M. Sakaida, K. Sasaki, and H. Tatsuoka, private communication.
  15. 15 R. Yaokawa, T. Ohsuna, T. Morishita, Y. Hayasaka, M. J. S. Spencer, and H. Nakano, Nat. Commun. 7, 10657 (2016).
  16. 16 R. Yaokawa, T. Ohsuna, Y. Hayasaka, and H. Nakano, ChemistrySelect 1, 5579 (2016).