JJAP Conference Proceedings

JJAP Conf. Proc. 8, 011201 (2020) doi:10.7567/JJAPCP.8.011201

Effect of Irradiation Atmospheres on the Film Growth of Iron Oxide on Si Substrate by Ion Beam Sputter Deposition Method

K. Yamanaka1,2, K. Yamaguchi2,1

  1. 1Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan
  2. 2National Institutes for Quantum and Radiological Science and Technology (QST), Tokai, Ibaraki 319-1106, Japan
  • Received October 02, 2019
  • PDF (1.3 MB) |


Fe3O4 thin films of approximately 30 nm in thickness were grown on Si substrate at 573 K by means of ion beam sputter deposition (IBSD) technique, using oxygen or argon ions to sputter Fe3O4 solid target. The effect of these irradiation atmospheres on the chemical composition and crystallinity of the thin films was investigated using XPS (X-ray Photoelectron Spectroscopy), RHEED (Reflection High-Energy Electron Diffraction), and XRD (X-Ray Diffraction). We revealed that the oxygen atmosphere improves the crystallinity of the film as compared with argon atmosphere, but also causes the formation of iron oxide phases other than Fe3O4. On the other hand, the obtained results for Fe3O4 thin films prepared in argon atmosphere had poor crystallinity. Furthermore, the results of RHEED suggested that the preferential growth orientations of the film are different depending on the irradiation atmospheres.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, Appl. Phys. Lett. 61, 1290 (1992).
  2. 2 W. Mao, M. Fujita, T. Chikada, K. Yamaguchi, A. Suzuki, T. Terai, and H. Matsuzaki, Surf. Coatings Technol. 283, 241 (2015).
  3. 3 D. V. Averyanov, A. M. Tokmachev, I. A. Likhachev, E. F. Lobanovich, O. E. Parfenov, E. M. Pashaev, Y. G. Sadofyev, I. A. Subbotin, S. N. Yakunin, and V. G. Storchak, Nanotechnology 27, 045703 (2016).
  4. 4 R. Jansen, Nat. Mater. 11, 400 (2012).
  5. 5 A. Yanase and K. Siratori, J. Phys. Soc. Jpn. 53, 312 (1984).
  6. 6 H. Hong, J. Kim, X. Fang, S. Hong, and T.-C. Chiang, Appl. Phys. Lett. 110, 021601 (2017).
  7. 7 Y. J. Kim, Y. Gao, and S. A. Chambers, Surf. Sci. 371, 358 (1997).
  8. 8 A. Hamie, Y. Dumont, E. Popova, A. Fouchet, B. Warot-Fonrose, C. Gatel, E. Chikoidze, J. Scola, B. Berini, and N. Keller, Thin Solid Films 525, 115 (2012).
  9. 9 A. Müller, A. Ruff, M. Paul, A. Wetscherek, G. Berner, U. Bauer, C. Praetorius, K. Fauth, M. Przybylski, M. Gorgoi, M. Sing, and R. Claessen, Thin Solid Films 520, 368 (2011).
  10. 10 Y. X. Lu, J. S. Claydon, Y. B. Xu, S. M. Thompson, K. Wilson, and G. van der Laan, Phys. Rev. B 70, 233304 (2004).
  11. 11 Z. C. Huang, X. F. Hu, Y. X. Xu, Y. Zhai, Y. B. Xu, J. Wu, and H. R. Zhai, J. Appl. Phys. 111, 07C108 (2012).
  12. 12 S. Tiwari, R. J. Choudhary, R. Prakash, and D. M. Phase, J. Phys.: Condens. Matter 19, 176002 (2007).
  13. 13 C. Boothman, A. M. Sánchez, and S. Van Dijken, J. Appl. Phys. 101, 123903 (2007).
  14. 14 E. M. Levin, H. F. McMurdie, and F. P. Hall, Phase Diagrams for Ceramists (American Ceramic Society, Columbus, OH, 1956) p. 51.
  15. 15 S. Igarashi, T. Katsumata, M. Haraguchi, T. Saito, K. Yamaguchi, H. Yamamoto, and K. Hojou, Vacuum 74, 619 (2004).
  16. 16 X. Zhang, S. Yang, Z. Yang, and X. Xu, J. Appl. Phys. 120, 085313 (2016).
  17. 17 T. Fujii, F. M. F. de Groot, G. A. Sawatzky, F. C. Voogt, T. Hibma, and K. Okada, Phys. Rev. B 59, 3195 (1999).