JJAP Conference Proceedings

JJAP Conf. Proc. 8, 011202 (2020) doi:10.7567/JJAPCP.8.011202

Spin-Valve Effects in Fe/N-Doped Carbon/Fe3Si Trilayered Films

Takuya Sakai1, Takeru Hamasaki1, Kazuki Kudo1, Ken-ichiro Sakai2, Hiroyuki Deguchi3, Tsuyoshi Yoshitake1

  1. 1Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  2. 2Department of Control and Information Systems Engineering, National Institute of Technology, Kurume College, Kurume, Fukuoka 830-8555, Japan
  3. 3Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 804-8550, Japan
  • Received January 17, 2020
  • PDF (2.1 MB) |

Abstract

Fe/nitrogen-doped carbon (50 nm)/Fe3Si tri-layered films were fabricated on Si(111) substrates by physical vapor deposition with a mask method, and the magnetic and electrical properties were investigated. Spin-valve signals were observed in magnetoresistance curves measured in local structure at not only 5 K but also room temperature. It was demonstrated that spin transport in variable hopping is possible for N-doped carbon.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).
  2. 2 S. Ohya, H. Kobayashi, and M. Tanaka, Appl. Phys. Lett. 83, 2175 (2003).
  3. 3 S. Sugahara and M. Tanaka, Appl. Phys. Lett. 84, 2307 (2004).
  4. 4 T. Uemura, T. Akiho, M. Harada, K. Matsuda, and M. Yamamoto, Appl. Phys. Lett. 99, 082108 (2011).
  5. 5 Y. Ando, K. Kasahara, K. Yamane, K. Hamaya, K. Sawano, T. Kimura, and M. Miyao, Appl. Phys. Express 3, 093001 (2010).
  6. 6 K. Hamaya, Y. Ando, T. Sadoh, and M. Miyao, Jpn. J. Appl. Phys. 50, 010101 (2011).
  7. 7 T. Suzuki, T. Sasaki, T. Oikawa, M. Shiraishi, Y. Suzuki, and K. Noguchi, Appl. Phys. Express 4, 023003 (2011).
  8. 8 K. Kasahara, Y. Baba, K. Yamane, Y. Ando, S. Yamada, Y. Hoshi, K. Sawano, M. Miyao, and K. Hamaya, J. Appl. Phys. 111, 07C503 (2012).
  9. 9 M. Kawano, K. Santo, M. Ikawa, S. Yamada, T. Kanashima, and K. Hamaya, Appl. Phys. Lett. 109, 022406 (2016).
  10. 10 G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
  11. 11 M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
  12. 12 M. Julliere, Phys. Lett. A 54, 225 (1975).
  13. 13 T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).
  14. 14 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).
  15. 15 T. Matsuno, S. Sugahara, and M. Tanaka, Jpn. J. Appl. Phys. 43, 6032 (2004).
  16. 16 S. Sugahara and M. Tanaka, Appl. Phys. Lett. 84, 2307 (2004).
  17. 17 K. Takanashi, Jpn. J. Appl. Phys. 49, 110001 (2010).
  18. 18 I. Appelbaum, B. Huang, and D. J. Monsma, Nature 447, 295 (2007).
  19. 19 B. Huang, D. J. Monsma, and I. Appelbaum, Phys. Rev. Lett. 99, 177209 (2007).
  20. 20 B. T. Jonker, G. Kioseoglou, A. T. Hanbicki, and C. H. Li, Nat. Phys. 3, 542 (2007).
  21. 21 K. Kasahara, Y. Fujita, S. Yamada, K. Sawano, M. Miyao, and K. Hamaya, Appl. Phys. Express 7, 033002 (2014).
  22. 22 M. Kimata, D. Nozaki, and Y. Niimi, Phys. Rev. B 91, 224422 (2015).
  23. 23 M. Ohishi, M. Shiraishi, R. Nouchi, T. Nozaki, T. Shinjo, and Y. Suzuki, Jpn. J. Appl. Phys. 46, L605 (2007).
  24. 24 M. Shiraishi, Jpn. J. Appl. Phys. 51, 08KA01 (2012).
  25. 25 D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. Lett. 103, 146801 (2009).
  26. 26 V. K. Dugaev, E. Ya. Sherman, and J. Barnaś, Phys. Rev. B 83, 085306 (2011).
  27. 27 K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature 401, 572 (1999).
  28. 28 T. Yoshitake, A. Nagano, M. Itakura, N. Kuwano, T. Hara, and K. Nagayama, Jpn. J. Appl. Phys. 46, L936 (2007).
  29. 29 T. Yoshitake, Y. Nakagawa, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, K. Sumitani, Y. Agawa, and K. Nagayama, Jpn. J. Appl. Phys. 49, 015503 (2010).
  30. 30 S. Ohmagari, T. Yoshitake, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, T. Hara, and K. Nagayama, Jpn. J. Appl. Phys. 49, 031302 (2010).
  31. 31 S. Ohmagari and T. Yoshitake, Jpn. J. Appl. Phys. 51, 090123 (2012).
  32. 32 Y. Katamune, S. Ohmagari, S. Al-Riyami, S. Takagi, M. Shaban, and T. Yoshitake, Jpn. J. Appl. Phys. 52, 065801 (2013).
  33. 33 Y. Asai, K. Sakai, K. Ishibashi, K. Takeda, and T. Yoshitake, JJAP Conf. Proc. 3, 011501 (2015).
  34. 34 Y. Asai, K. Sakai, K. Ishibashi, K. Takeda, and T. Yoshitake, JJAP Conf. Proc. 3, 011504 (2015).
  35. 35 K. Takeda, T. Yoshitake, D. Nakagauchi, T. Ogawa, D. Hara, M. Itakura, N. Kuwano, Y. Tomokiyo, T. Kajiwara, and K. Nagayama, Jpn. J. Appl. Phys. 46, 7846 (2007).
  36. 36 K. Ishibashi, K. Nakashima, K. Sakai, and T. Yoshitake, APS Conf. Proc. GT1.00151, 2015.
  37. 37 K. Ishibashi, K. Kudo, K. Nakashima, Y. Asai, K. Sakai, H. Deguchi, and T. Yoshitake, JJAP Conf. Proc. 5, 011501 (2017).
  38. 38 Y. Katamune, S. Takeichi, R. Ohtani, S. Koizumi, E. Ikenaga, K. Kamitani, T. Sugiyama, and T. Yoshitake, Appl. Phys. A 125, 295 (2019).
  39. 39 K. Nomoto, M. Shaban, H. Kondo, and T. Yoshitake, IEEE Proc. COMMAD’08, 2008, p. 263.