JJAP Conference Proceedings

JJAP Conf. Proc. 8, 011301 (2020) doi:10.7567/JJAPCP.8.011301

Structural, Optical and AC Conductivity Studies on Polycrystalline-Si/Nanocrystalline-FeSi2 Composite Thin Films

Yuta Saito, Hiroshi Katsumata

  1. School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
  • Received September 30, 2019
  • PDF (840 KB) |

Abstract

We investigated an electrical conduction mechanism of Si/FeSi2 composite films by measuring a frequency dependence of AC electrical conductivity. The results were analyzed based upon Jonscher’s power law. The hopping conduction obeying the Jonscher’s power law was observed for a-Si single films after annealing as well as Si/FeSi2 composite films annealed at 550 and 900 °C. From the analysis of XRD, optical absorption, TEM/EDS and AC conductivity, we conclude that the electrical conduction mechanisms in polycrystalline (poly)-Si/β-FeSi2 annealed at 550 °C and poly-Si/α- and β-FeSi2 annealed at 900 °C are due to electron hopping via the conduction band of β-FeSi2 and α-FeSi2 nanocrystals embedded in poly-Si thin films, respectively.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 A. Nakazawa, US patent, US9887441B2 (2018).
  2. 2 A. Sasaki, A. Sasaki, H. Hirabayashi, S. Saito, K. Aoki, Y. Kataoka, K. Suzuki, H. Yabuhara, T. Ito, and S. Takagi, Jpn. J. Appl. Phys. 57, 041201 (2018).
  3. 3 K. Okajima, H. Yamatsugu, C. Wen, M. Sudoh, and K. Yamada, Thin Solid Films 381, 267 (2001).
  4. 4 M. Sawata and H. Katsumata, Extended abstract of International Thin Films Conference TACT 2015, 2015, P-C25-0191.
  5. 5 S. M. Sze, Physics of Semiconductor Devices (1981) p. 12.
  6. 6 N. M. Ravindra, C. Ance, S. P. Coulibaly, F. De Chelle, J. M. Berger, J. P. Ferraton, and A. Donnadieu, Infrared Phys. 23, 99 (1983).
  7. 7 B. Swatowska, S. Kluska, M. Jurzecka-Szymacha, T. Stapinski, and K. Tkacz-Smiech, Appl. Surf. Sci. 371, 91 (2016).
  8. 8 A. B. Filonov, V. E. Borisenko, W. Henrion, and H. Lange, J. Lumin. 80, 479 (1998).
  9. 9 K. Takakura, N. Hiroi, T. Suemasu, S. F. Chichibu, and F. Hasegawa, Appl. Phys. Lett. 80, 556 (2002).
  10. 10 A. K. Jonscher, Nature 267, 673 (1977).
  11. 11 S. Y. Yoon, S. J. Park, K. H. Kim, and J. Jang, Thin Solid Films 383, 34 (2001).
  12. 12 W. Knaepen, C. Detavernier, R. L. Van Meirhaeghe, J. Jordan Sweet, and C. Lavoie, Thin Solid Films 516, 4946 (2008).
  13. 13 H. Kafashan, J. Electron. Mater. 48, 1294 (2019).
  14. 14 J. Tauc and A. Menth, J. Non-Cryst. Solids 8–10, 569 (1972).
  15. 15 X. Xu, J. Yang, A. Banerjee, S. Guha, K. Vasanth, and S. Wagner, Appl. Phys. Lett. 67, 2323 (1995).
  16. 16 R. Dridi, I. Saafi, A. Mhamdi, A. Yumak, M. Haj Lakhdar, A. Amlouk, K. Boubaker, and M. Amlouk, J. Alloys Compd. 634, 179 (2015).
  17. 17 A. Sharma, A. Kumar, and N. Mehta, Measurement 75, 69 (2015).
  18. 18 A. Yidiz, N. Serin, T. Serin, and M. Kasap, Jpn. J. Appl. Phys. 48, 111203 (2009).
  19. 19 Y. Yao, B. Bo, and C. Liu, Curr. Appl. Phys. 18, 1492 (2018).
  20. 20 X.-Y. Zou, Mod. Phys. Lett. B 31, 1740026 (2017).
  21. 21 G. K. Dalapati, C. C. Tan, S. Masudy-Panah, H. R. Tan, and D. Chi, Mater. Lett. 159, 455 (2015).