JJAP Conference Proceedings

JJAP Conf. Proc. 8, 011302 (2020) doi:10.7567/JJAPCP.8.011302

X-Ray Diffraction Investigation of Lithium Silicides under High Pressure

H. Iwasa1, S. Ikemoto1, F. Ohashi1,2, H. S. Jha2, T. Kume1,2,3

  1. 1Department of Energy Engineering, the Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
  2. 2Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
  3. 3International Joint Department of Integrated Mechanical Engineering of IITG and GU, the Graduate School of Engineering, Gifu University, Gifu 501-1193, Japan
  • Received October 01, 2019
  • PDF (874 KB) |


Lithium silicide Li12Si7 (orthorhombic) and Li7Si3 (trigonal), composed of Li ions and Si clusters were synthesized by heat treatment of Li and Si mixture. Their high-pressure properties were investigated by synchrotron X-ray diffraction (XRD) measurements using a diamond anvil cell (DAC). Compression was successfully made up to 16 GPa for Li12Si7 and 20 GPa for Li7Si3, but no phase transition was observed. The bulk modulus was obtained from the fitting by Murnaghan equation of state. The obtained bulk moduli were compared with those of other lithium silicides, Si and Li, and there were found to be correlation between the bulk modulus and the Li–Si composition ratio.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 U. Kasavajjula, C. Wang, and A. J. Appleby, J. Power Sources 163, 1003 (2007).
  2. 2 M. J. Chon, V. A. Sethuraman, A. McCormick, V. Srinivasan, and P. R. Guduru, Phys. Rev. Lett. 107, 045503 (2011).
  3. 3 V. A. Sethuraman, M. J. Chon, M. Shimshak, V. Srinivasan, and P. R. Guduru, J. Power Sources 195, 5062 (2010).
  4. 4 V. L. Chevrier, J. W. Zwanziger, and J. R. Dahna, J. Alloys Compd. 496, 25 (2010).
  5. 5 J. Li and J. R. Dahn, J. Electrochem. Soc. 154, A156 (2007).
  6. 6 J. Evers, G. Oehlinger, and G. Sextl, Angew. Chem., Int. Ed. 32, 1442 (1993).
  7. 7 L. A. Stearns, J. Gryko, J. Diefenbacher, G. K. Ramachandran, and P. F. McMillan, J. Solid State Chem. 173, 251 (2003).
  8. 8 J. B. Ratchford, B. A. Poese, J. Wolfenstine, C. A. Lundgren, and J. L. Allen, ARL-TR-5818 (2011).
  9. 9 D. Thomas, N. Bette, F. Taubert, R. Hüttl, J. Seidel, and F. Mertens, J. Chem. Thermodyn. 64, 205 (2013).
  10. 10 H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steinberg, J. Appl. Phys. 49, 3276 (1978).
  11. 11 M. Hanfland, I. Loa, K. Syassen, U. Schwarz, and K. Takemura, Solid State Commun. 112, 123 (1999).
  12. 12 J. Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge University Press, 2003) 2nd ed., Chap. 4, p. 63.
  13. 13 Z. Zeng, N. Liu, Q. Zeng, Y. Ding, S. Qu, Y. Cui, and W. L. Mao, J. Power Sources 242, 732 (2013).
  14. 14 V. B. Shenoy, P. Johari, and Y. Qi, J. Power Sources 195, 6825 (2010).
  15. 15 V. L. Chevrier, J. W. Zwanziger, and J. R. Dahn, Can. J. Phys. 87, 625 (2009).
  16. 16 H. Kim, C. Y. Chou, J. G. Ekerdt, and G. S. Hwang, J. Phys. Chem. C 115, 2514 (2011).